首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS) was investigated as a potential technique for the routine determination of trace elements in mineral coal and cadmium, copper and lead were chosen as the model elements. Cadmium and lead could be determined at their main resonance lines at 228.8 nm and 283.3 nm, respectively, but an alternate, less sensitive line had to be used for the determination of copper because of the high copper content in coal. No modifier was necessary for the determination of copper and calibration against aqueous standards provided sufficient accuracy of the results. For the determination of cadmium and lead two different modifiers were investigated, palladium and magnesium nitrates in solution, added on top of each sample aliquot before introduction into the atomizer tube, and ruthenium as a ‘permanent’ modifier. Both approaches gave comparable results, and it is believed that this is the first report about the successful use of a permanent chemical modifier in SS-GF AAS. Calibration against solid standards had to be used for the determination of cadmium and lead in order to obtain accurate values. The agreement between the values found by the proposed procedure and the certificate values for a number of coal reference materials was more than acceptable for routine purposes. The detection limits calculated for 1 mg of coal sample using the ‘zero mass response’ were 0.003 and 0.007 μg g−1 for cadmium with the permanent modifier and the modifier solution, respectively, approximately 0.04 μg g−1 for lead, and 0.014 μg g−1 for copper.  相似文献   

2.
A method for the determination of As, Hg, Sb, Se and Sn in environmental and in geological reference materials, as acidified slurries, by flow injection (FI) coupled to a hydride generation system (HG) and detection by inductively coupled plasma mass spectrometry (ICP-MS) is proposed. The HG unit has a gas liquid separator and a drying unit for the generated vapor. The slurries were prepared by two procedures. Approximately 50 mg of the reference material, ground to a particle size ≤50 μm, was mixed with acid solutions in an ultrasonic bath. In Procedure A, the medium was a hydrochloric acid solution while in Procedure B, the medium was aqua regia plus a hydrochloric acid solution. The conditions for the slurry formation and the instrumental parameters were optimized. Harsh conditions were used in the slurry preparation in order to reduce the hydride forming analytes to their lower oxidation states, As (III), Se(IV), Sb(III) and Sn(II), before reacting with sodium tetrahydroborate. To test the accuracy, 10 certified reference materials were analyzed (four sediments, three coals, one coal fly ash and two sewage sludges), with the analyte concentrations mostly in the μg g−1 level. Good agreements with the certified values were obtained for Hg, Sb and Sn in the sediments using Procedure A and calibration against aqueous standard solutions. Using Procedure B, good results were obtained for Hg, Se and Sn in the sediment samples, for Se in the coal and coal fly ash samples and for Hg in the sewage sludge samples, also using external calibration with aqueous standard solutions. For As in sediments, coals and coal fly ash, Procedure B and the analyte addition calibration was required, indicating matrix effects. The relative standard deviations were lower than 5%, demonstrating a good precision for slurry analysis. The limits of quantification (10 times the standard deviation; n=10), in the samples, in ng g−1, were: 20 for As, 60 for Hg, 80 for Sb, 200 for Se and 90 for Sn. The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

3.
A procedure is proposed to avoid spectral and/or non-spectral interferences in graphite furnace atomic absorption spectrometry (GF AAS) by transferring the analyte during the pyrolysis stage from a solid sampling platform to the graphite tube wall that has been coated with a permanent modifier, e.g. by electrodeposition of a platinum-group metal. The direct determination of mercury in solid coal samples was chosen as a model to investigate the feasibility of this idea. The graphite tube surface was coated with palladium and the analyte was transferred from the solid sampling platform to the tube wall at a temperature of 500±50 °C. A characteristic mass of m0=64 pg Hg was obtained for an atomization temperature of 1300 °C, proposing a quantitative transfer of the analyte to the tube wall. Calibration against aqueous mercury standards was not feasible as this element was lost in part already during the drying stage and could not be trapped quantitatively on the modified graphite tube surface. However, the results for all except one of the coal reference materials were within the 95% confidence interval of the certificate when the slope of a correlation curve between the integrated absorbance, normalized for 1 mg of sample, and the certified value for mercury was used for calibration. A detection limit of 0.025–0.05 μg g−1 Hg in coal, calculated from three times the standard deviation of the investigated coal samples, could be obtained with the proposed method. The spectral interference due to excessive background absorption in the direct determination of mercury in coal could be eliminated completely. It is expected that this analyte transfer can be used in a similar way to eliminate other spectral and/or non-spectral interferences in the GF AAS determination of other volatile analytes.  相似文献   

4.
A slurry sampling hydride generation (SS-HG) method for the simultaneous determination of hydride forming elements (As, Sb, Se, Sn) and Hg, without total sample digestion, has been developed using batch mode generation system coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from certified biological and environmental reference materials. Slurry concentration up to 3.6% m/v (particles < 80 μm) prepared in 10% HCl containing 100 μl of decanol, by the application of ultrasonic agitation, was used with calibration by the standard addition technique. Harsh conditions were used in the slurry preparation in order to reduce the hydride forming elements to their lower oxidation states, As(III), Sb(III), Se(IV) and Sn(II) and Hg, being reduced to mercury vapor, before reacting with sodium tetrahydroborate. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction vessel. For 10 ml of slurry sample, detection limits (LOD, 3σblank, peak area) of 0.06, 0.08, 0.15, 0.12 and 0.10 μg g− 1 were obtained for As, Sb, Se, Sn and Hg, respectively. The method offers relatively good precision (RSD ranged from 9 to 12%) for slurry analysis. To test the accuracy, three certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials: NRCC LUTS-1 (lobster hepatopancreas), NRCC DOLT-2 (Dogfish Liver) and environmental reference material: NRCC PACS-1 (Marine Sediment), all adequate for slurry sampling. The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

5.
A method for the determination of Cd, Hg, Pb and Se in sediments reference materials by slurry sampling chemical vapor generation (CVG) using isotopic dilution (ID) calibration and detection by inductively coupled plasma mass spectrometry (ICP-MS) is proposed. Two different systems were used for the investigation: an on-line flow injection system (FI-CVG-ICP-MS) and an off-line system with in situ trapping electrothermal vaporization (CVG-ETV-ICP-MS). About 100 mg of the reference material, ground to a particle size ≤50 μm, was mixed with acid solutions (aqua regia, HF and HCl) in an ultrasonic bath. The enriched isotopes 111Cd, 198Hg, 206Pb and 77Se were then added to the slurry in an adequate amount in order to produce an altered isotopic ratio close to 1. For the on-line system, a standing time for the slurry of 12 h before measurement was required, while for the batch system, no standing time is needed to obtain accurate results. The conditions for the formation of the analyte vapor were optimized for the evaluated systems. The following altered isotope ratios were measured: 111Cd/114Cd, 198Hg/199Hg, 206Pb/208Pb e 77Se/82Se. The obtained detection limits in the on-line system, in μg g−1, were: Cd: 0.15; Hg: 0.09; Pb: 6.0 and Se: 0.03. Similar detection limits were obtained with the system that uses the ETV: 0.21 for Hg, 6.0 for Pb and 0.06 μg g−1 for Se. No signal for Cd was obtained in this system. One estuarine, two marine and two river certified sediments were analyzed to check the accuracy. The obtained values by both systems were generally in agreement with the certified concentrations, according to the t-test for a confidence level of 95%, demonstrating that isotope equilibration was attained in the slurries submitted to a chemical vapor generation procedure and detection by ICP-MS. The relative standard deviations were lower than 10%, adequate for slurry analysis. The almost quantitative analytes extractions to the aqueous phase of the slurry must favor equilibration of the added enriched isotope with the isotope in the sample, allowing the use of isotopic dilution calibration for slurry analysis.  相似文献   

6.
Low recovery rate and inconsistent measurements were found in the determination of mercury by method of cold vapor atomic absorption spectrophotometry using the hydride formation system (Hitachi HFS-2, Hitachi Ltd., Tokyo). To overcome this problem of insufficient reaction time we developed a simple T-joint device attaching to the commercial HFS-2 system for the determination of mercury in various biological tissues and sediment samples. The T-joint device was designed to combine sample and reductant injection which increased the reaction time of the sample allowing a complete formation of mercury vapor and speeding up the analysis process in comparison to the traditional cold vapor atomic absorption spectrometric method. Recoveries of mercury were in the range 95% - 100%. The corrected procedure gave precise and accurate readings with several certified reference materials: NIES No. 2 from the Japan Environment Agency; IAEA-356 from the International Atomic Energy Association, and DOLT-2, DORM-2, TORT-2, PACS-1 and MESS-2 from the National Research Council of Canada. Simple acid digestion methods were developed based on the sample Hg level and the nature of the sample. The sample detection limits were 0.0125 μg g−1 fresh weight and 0.0625 μg g−1 dry weight for biological samples, and as low as 0.0125 μg g−1 dry weight for sediment samples. These analytical protocols we established met the general requirements in environmental research and monitoring of mercury pollution.  相似文献   

7.
Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l−1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55–60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg−1 were satisfactory for a routine procedure.  相似文献   

8.
A procedure for the determination of Cd, Cu, Pb, Se and Tl by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) with calibration by isotopic dilution is proposed. The slurry is prepared by mixing the sample with diluted nitric and hydrofluoric acids in an ultrasonic bath and then in a water bath at 60 °C for 120 min. The slurries were let to stand at least for 12 h, manually shaken before poured into the autosampler cups and homogenized by passing through an argon flow, just before pipetting it into the furnace. The analytes were determined in two groups, according to their thermal behaviors. The furnace temperature program was optimized and the selected compromised pyrolysis temperatures were: 400 °C for Cd, Se and Tl and 700 °C for Cu and Pb. The vaporization temperature was 2300 °C. The analyses were carried out without modifier as no significant effect was observed for different tested modifiers. Different sample particle sizes did not affect the sensitivity significantly, then a particle size ≤50 μm was adopted. The accuracy was checked by analyzing five certified reference sediments, with analytes concentrations from sub-μg g−1 to a few hundreds μg g−1. The great majority of the obtained concentrations were in agreement with the certified values. The detection limits, determined for the MESS-2 certified sediment, were, in μg g−1: 0.01 for Cd; 0.8 for Cu; 0.4 for Pb; 0.4 for Se and 0.06 for Tl. The precision was adequate with relative standard deviations lower than 12%. Isotopic dilution showed to be an efficient calibration technique for slurry, as the extraction of the analyte to the liquid phase of the slurry and the reactions in the vaporizer must help the equilibration between the added isotope and the isotope in the sample.  相似文献   

9.
A slurry sampling method for the simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements, without total sample digestion has been developed using the commercial dual-mode sample introduction system (MSIS) coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from biological and environmental reference materials and real samples. The main advantage of this system is its simultaneous determination of elements that form volatile vapor species and elements that do not, without any instrumental changes. Optimization of reaction, nebulization and instrumental conditions was performed to characterize the new system. Slurry concentration up to 4% m/v (particles < 100 μm) prepared in 10% HNO3 containing 100 μL of decanol, by application of ultrasonic agitation, was used with calibration by the standard addition technique. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction/nebulization system; the multimode sample introduction system (MSIS) combines the benefits of nebulization and vapor generation in a single device. Detection limits (LOD, 3σblank, peak area) of 0.07, 0.29, 0.25, 0.10, 0.12, 0.14, 0.11, 0.28, 0.42, 0.02, 0.21 and 0.34 μg g− 1 were obtained for As, Bi, Ge, Sb, Se, Sn, Hg, Ca, Fe, Mg, Mn and Zn, respectively. The relative standard deviations were ca. 10%, adequate for slurry analysis. To test the accuracy, six certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials (LUTS-1, DOLT-2) and environmental reference materials (PACS-1, GWB 07302, NIST 2710, NBS 1633b), all adequate for slurry sampling. The method was successfully applied to the determination of the elements in real samples (coal fly ash, lake sediment, sewage). The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

10.
The determination of thallium by graphite furnace atomic absorption spectrometry (GFAAS) is plagued by several difficult-to-control interferences. High-resolution continuum-source GFAAS, a technique not yet commercially available, was used to investigate and eliminate spectral interferences, and to develop a reliable method for the determination of thallium in coal using direct solid sampling. The resolution of 2.1 pm per pixel, and the display of the spectral environment ±0.2 nm on both sides of the analytical line were ideally suited for that purpose. The thallium signal was preceded by excessive non-specific absorption due to the coal matrix when pyrolysis temperatures ≤600 °C were used, and a characteristic molecular absorption with pronounced fine structure was following the atomic absorption. With a pyrolysis temperature of 700 °C the non-specific absorption at the beginning of the atomization stage could be eliminated, and using an atomization temperature of 1700 °C, and no modifier, the atomic absorption could be separated in wavelength and in time from the molecular structures, making possible an interference-free determination of thallium, using Pixel 260 at 276.8085 nm for background correction. The results obtained for 11 coal samples and one coal fly ash were in agreement at a 95% confidence level without a modifier, with palladium added in solution, and with ruthenium as permanent modifier, respectively, using aqueous standards for calibration. A characteristic mass of m0=12 pg and 5.5 pg was obtained with the center pixel only, and the center pixel ±1, respectively. The precision, expressed as relative standard deviation was typically better than 5%, and the limit of detection, based on three times the standard deviation of the coal with the lowest analyte content, was 0.01 μg g−1.  相似文献   

11.
Direct cold vapor and hydride generation procedures for As, Bi, Ge, Hg and Se(IV) from aqueous slurry of coal fly ash samples have been developed by using a batch mode generation system. Ir-treated graphite tubes have been used as a preconcentration and atomization medium of the vapors generated. A Plackett–Burman experimental design has been used as a strategy for evaluation of the effects of several parameters affecting the vapor generation efficiency from solid particles, vapor trapping and atomization efficiency from Ir-treated graphite tubes. The effects of parameters such as hydrochloric acid and sodium tetrahydroborate, argon flow rate, trapping and atomization temperatures, trapping time, acid solution volume and mean particle size have been investigated. The significant parameters obtained (trapping and atomization temperatures for As and Ge; trapping temperature and trapping time for Bi; argon flow rate and atomization temperature for Se) have been optimized by 22+star central composite design. For Hg, the trapping temperature has been also significant. Optimum values of the parameters have been selected for the development of direct cold vapor/hydride generation methods from slurry particles. The accuracy of methods have been verified by using NIST-1633a coal fly ash certified reference material. Absolute detection limits of 11.5, 48.0, 600, 55.0 and 11.0 ng l−1 for As, Bi, Ge, Hg and Se have been achieved, respectively. A particle size less than 50 μm has shown to be adequate to obtain total cold vapor/hydride generation of metals content in the aqueous slurry particles.  相似文献   

12.
The feasibility of Ru as a permanent modifier for the determination of Cd in biological samples treated with tetramethylammonium hydroxide (TMAH) by ET AAS was investigated. The tube treatment with Ru was carried out only once and lasted for about 300 atomization cycles. The pyrolysis and atomization temperatures, 750 °C and 1300 °C, respectively, were chosen from the temperature curves. The sample dissolution procedure was very simple: a sample aliquot was mixed with a small volume of a 25% m/v TMAH solution, the volume was made up to 50 ml and the mixture was kept at 60 °C for 1 h. Six certified biological reference materials were analyzed and the obtained Cd concentrations are within the 95% confidence interval of the certified values, proving the accuracy of the proposed procedure for a variety of biological samples. The calibration curve, with correlation coefficient higher than 0.99, was established for a working range up to10 μg l−1. The precision was good as demonstrated by relative standard deviations below 3%, except for one sample. The limit of detection (3σ) was 0.05 μg l−1 and the characteristic mass was 1.30 pg, obtained in the presence of the Ru modifier.  相似文献   

13.
Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24–58, 6–28 and 108–110 ng g−1 for Cd, Hg and Pb, respectively.  相似文献   

14.
A method for the determination of Sn in slurry samples of sediment and coal by hydride generation graphite furnace electrothermal atomic absorption spectrometry (HG-GF AAS) is proposed. The slurries were prepared by mixing the ground sample (particle size 50 m) with 2.0 mol L–1 HCl for the sediment samples or with 2.0 mol L–1 HCl+1.0% v/v HF in a saturated boric acid medium for the coal samples. The slurry was placed in an ultrasonic bath for 30 min, before and after standing for 24 h, with occasional manual stirring. The graphite tube was treated with 0.5 mg of Th or W as a permanent modifier. Sn determination was carried out by electrothermal atomic absorption spectrometry at the optimized retention temperatures of 450 and 300°C for Th and W treatment, respectively. With this coupling, kinetic interference in the formation of the hydrides is avoided, and excellent detection limits can be obtained by using peak height. For the chemical vapor generation device, an optimized volume of 2 mL of sample slurry and an optimized NaBH4 concentration of 5% m/v were employed. The vapor produced was transported and retained on the graphite tube surface, which was further heated for Sn atomization. The accuracy of the method was verified by analyzing five certified sediments and three coals. By using the external calibration against aqueous standard solutions, the results obtained were in agreement with the certified values only for the sediment samples. For the coal samples, an addition calibration curve, obtained for one certified coal, was necessary to achieve accurate results. The obtained limits of detection were 0.03 g g–1 for sediment and 0.09 g g–1 for coal with Th as permanent modifier. The relative standard deviations were lower than 15%, demonstrating an adequate precision for slurry analysis. Sediment and coal samples from Santa Catarina, Brazil, were also analyzed.  相似文献   

15.
We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL 1, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method.  相似文献   

16.
The investigation of trace metal contents in hair can be used as an index of exposure to potentially toxic elements. Direct determination of Cd, Cu and Pb in slurries of hair samples was investigated using an atomic absorption spectrometer with Zeeman-effect background correction. The samples were pulverized in a freezer/mill for 13 min, and hair slurries with 1.0 g l−1 for the determination of Cu and Pb, and 5.0 g l−1 for the determination of Cd, respectively, were prepared in three different media: 0.1% v/v Triton X-100, 0.14 mol l−1 HNO3, and 0.1% v/v of CFA-C, a mixture of tertiary amines. The easiest way to manipulate the hair samples was in CFA-C medium. The optimum pyrolysis and atomization temperatures were established with hair sample slurries spiked with 10 μg l−1 Cd2+, 30 μg l−1 Pb2+, and 10 μg l−1 Cu2+. For Cd and Pb, Pd was used as a chemical modifier, and for Cu no modifier was needed. The analyte addition technique was used for quantification of Cd, Cu, and Pb in hair sample slurries. A reference material (GBW076901) was analyzed, and a paired t-test showed that the results for all elements obtained with the proposed slurry sampling procedure were in agreement at a 95% confidence level with the certified values. The cryogenic grinding was an effective strategy to efficiently pulverize hair samples.  相似文献   

17.
Five different slurry preparation procedures were tested, after grinding the solid samples to a particle size ≤53 μm: (1) using aqua regia plus HF, 30 min of sonication, standing time of 24 h followed by another 30 min of sonication; (2) same as the previous one, except that the standing time and the second ultrasound treatment were omitted; (3) same as the previous one, except that HF was not used; (4) same as the previous one, except that the aqua regia was replaced by nitric acid; (5) same as the previous one, except that the acid nitric was replaced by tetramethylammonium hydroxide (TMAH). The Hg vapor was generated on-line, and the emission signal intensity measured at 253.652 nm by axial view inductively coupled plasma optical emission spectrometry. Initially, four experimental conditions were optimized using a multivariate factorial analysis: the concentrations of HCl and of the reducing agent, NaBH4, used in the cold vapor generation, and two instrumental parameters, the plasma radiofrequency power and the carrier gas flow rate. The radiofrequency power was statistically significant, but limited to 1.2 kW for practical reasons. The procedures were applied to 11 biological and environmental materials. Both, the slurries and the filtrates were analyzed, using calibration solutions in the same medium as in the slurries. The first three procedures produced results in agreement with the certified values. The two last procedures, using nitric acid or TMHA could not be used for quantitative analysis. For practical reasons, Procedure 3, with a detection limit (3s, n=10) of 0.06 μg g−1 for a sample mass of 20 mg in a final volume of 15 mL is recommended. The relative standard deviations for mercury in the investigated materials, using the recommended procedure, were lower than 12.5%, indicating a good precision for slurry sampling. The recommended procedure is simple, rapid and robust.  相似文献   

18.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

19.
In this work a procedure for mercury determination by Flow Injection-Cold Vapor Generation-Inductively Coupled Plasma Optical Emission Spectrometry (FI-CVG-ICP OES) has been developed. The system uses a small homemade glass separator constructed to drive the Hg vapor to the plasma. An evolutionary operation factorial design was used to evaluate the optimal experimental conditions for mercury vapor generation, aiming at the low consumption of reagents, the improvement of the analytical signal and consequently greater sensitivity. The procedure allowed the determination of mercury and showed excellent linearity for the concentration range from 0.50 μg L(-1) to 100.0 μg L(-1), with Limits of Detection (LOD) and Quantification (LOQ) of 0.11 μg L(-1) and 0.36 μg L(-1), respectively, and a sampling rate of 36 analyses per hour. The optimized procedure showed good accuracy and precision, and the method was validated by the analysis of two certified reference materials: Buffalo River Sediment (NIST 2704) and human hair (IAEA 085). A good agreement with the certified values was achieved, with recovery values of 99% and 98% and relative standard deviation close to 2%.  相似文献   

20.
Rhodium (Rh) was investigated as a permanent modifier for the atomization of Pb from biological fluids in W-filament atomic absorption spectrometry (AAS). Heating the W-filament with a Rh solution provided a protective coating for subsequent determinations of Pb in blood and urine matrices. The W-filament AAS instrumentation used was based on a prototype design that utilized self-reversal background correction scheme and peak area measurements. We found that Rh not only stabilized Pb during the pyrolysis step, but also facilitated the removal of carbonaceous residues during the cleaning step, requiring much less power than with phosphate modifier. Thus, the filament lifetime was greatly extended to over 300 firings. Periodic reconditioning with Rh was necessary every 30 firings or so. Conditioning the filament with Rh also permitted direct calibration using simple aqueous Pb standards. The method detection limit for blood Pb was approximately 1.5 μg dl−1, similar to that reported previously. Potential interferences from concomitants such as Na, K, Ca and Mg were evaluated. Accuracy was verified using lead reference materials from the National Institute of Standards and Technology and the New York State Department of Health. Blood lead results below 40 μg dl−1 were within ±1 μg dl−1 of certified values, and within ±10% above 40 μg dl−1; within-run precision was ±10% or better. Additional validation was reported using proficiency test materials and human blood specimens. All blood lead results were within the acceptable limits established by regulatory authorities in the US. When measuring Pb in urine, sensitivity was reduced and matrix-matched calibration became necessary. The method of detection limit was 27 μg l−1 for urine Pb. Urine lead results were also validated using an acceptable range comparable to that established for blood lead by US regulatory agencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号