首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neck retardation in stretching of ductile materials is promoted by strain hardening, strain-rate hardening and inertia. Retardation is usually beneficial because necking is often the precursor to ductile failure. The interaction of material behavior and inertia in necking retardation is complicated, in part, because necking is highly nonlinear but also because the mathematical character of the response changes in a fundamental way from rate-independent necking to rate-dependent necking, whether due to material constitutive behavior or to inertia. For rate-dependent behavior, neck development requires the introduction of an imperfection, and the rate of neck growth in the early stages is closely tied to the imperfection amplitude. When inertia is important, multiple necks form. In contrast, for rate-independent materials deformed quasi-statically, single necks are preferred and they can emerge in an imperfection-free specimen as a bifurcation at a critical strain. In this paper, the interaction of material properties and inertia in determining neck retardation is unraveled using a variety of analysis methods for thin sheets and plates undergoing plane strain extension. Dimensionless parameters are identified, as are the regimes in which they play an important role.  相似文献   

2.
Mechanical models of material failure by void growth to coalescence are described to give a brief overview of methods applied in the analysis of ductile fracture. Approximate constitutive relations for porous ductile materials are discussed, modelling both the nucleation and growth of voids. The application of the material models is illustrated by numerical analyses for a tensile test specimen and for dynamic, ductile crack growth. Unstable void growth is a relevant mechanism in ductile materials subject to a high level of triaxial tension. The analysis of such cavitation instabilities in elastic-perfectly plastic materials is discussed for axisymmetric stress states, and the relevance to metal/ceramic components is emphasized.General Lecture presented at the 10th Italian National Congress of Theoretical and Applied Mechanics; AIMETA, Pisa, October 1990.  相似文献   

3.
A rate-dependent crystallographic constitutive theory coupled with a mass diffusion model has been used to study crack initiation in single crystal nickel-base superalloys, exposed to an oxidising environment and subjected to mechanical loading. The time to crack initiation under constant load has been predicted using a strain-based failure criterion. A notched compact tension (CT) specimen containing a single casting defect, idealised as a cylindrical void close to the notch surface, has been studied. Finite element analysis of the CT specimen revealed that, due to the strong localisation of inelastic strain at the void, a microcrack will initiate in the vicinity of the void rather than at the notch surface. The numerical results have also shown that the time to crack initiation depends strongly on the void location. The coupled diffusion-deformation studies have revealed that environmental effects reduce the time to crack initiation due to the oxidation-induced material softening in the vicinity of the notch and void. The applicability of a failure assessment approach, based on the linear elastic stress intensity factor, K, to predict the crack initiation time under creep loading is examined and a probabilistic framework for prediction of component lifetime is proposed.  相似文献   

4.
An experimental investigation of the rupture mechanisms in a mid-strength and a high-strength steel were conducted employing a novel test configuration. The specimen used was a double notched tube specimen loaded in combined tension and torsion at a fixed ratio. The effective plastic strain, the stress triaxiality and the Lode parameter were determined in the centre of the notch at failure. Scanning electron microscopy of the fractured surfaces revealed two distinctively different ductile rupture mechanisms depending on the stress state. At high stress triaxiality the fractured surfaces were covered with large and deep dimples, suggesting that growth and internal necking of voids being the governing rupture mechanism. At low triaxiality it was found that the fractured surfaces were covered with elongated small shear dimples, suggesting internal void shearing being the governing rupture mechanism. In the fractured surfaces of the high-strength steel, regions with quasi-cleavage were also observed. The transition from the internal necking mechanism to the internal shearing mechanism was accompanied by a significant drop in ductility.  相似文献   

5.
This paper summarizes our recent studies on modeling ductile fracture in structural materials using the mechanism-based concepts. We describe two numerical approaches to model the material failure process by void growth and coalescence. In the first approach, voids are considered explicitly and modeled using refined finite elements. In order to predict crack initiation and propagation, a void coalescence criterion is established by conducting a series of systematic finite element analyses of the void-containing, representative material volume (RMV) subjected to different macroscopic stress states and expressed as a function of the stress triaxiality ratio and the Lode angle. The discrete void approach provides a straightforward way for studying the effects of microstructure on fracture toughness. In the second approach, the void-containing material is considered as a homogenized continuum governed by porous plasticity models. This makes it possible to simulate large amount of crack extension because only one element is needed for a representative material volume. As an example, a numerical approach is proposed to predict ductile crack growth in thin panels of a 2024-T3 aluminum alloy, where a modified Gologanu–Leblond–Devaux model [Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Tech. 116, 290–297; Gologanu, M., Leblond, J.B., Perrin, G., Devaux, J., 1995. Recent extensions of Gurson’s model for porous ductile metals. In: Suquet, P. (Ed.) Continuum Micromechanics. Springer-Verlag, pp. 61–130] is used to describe the evolution of void shape and void volume fraction and the associated material softening, and the material failure criterion is calibrated using experimental data. The calibrated computational model successfully predicts crack extension in various fracture specimens, including the compact tension specimen, middle crack tension specimens, multi-site damage specimens and the pressurized cylindrical shell specimen.  相似文献   

6.
Ductile failure of metals is often treated as the result of void nucleation, growth and coalescence. Various criteria have been proposed to capture this failure mechanism for various materials. In this study, ductile failure of dual phase steels is predicted in the form of plastic strain localization resulting from the incompatible deformation between the harder martensite phase and the softer ferrite matrix. Microstructure-level inhomogeneity serves as the initial imperfection triggering the instability in the form of plastic strain localization during the deformation process. Failure modes and ultimate ductility of two dual phase steels are analyzed using finite element analyses based on the actual steel microstructures. The plastic work hardening properties for the constituent phases are determined by the in-situ synchrotron-based high-energy X-ray diffraction technique. Under different loading conditions, different failure modes and ultimate ductility are predicted in the form of plastic strain localization. It is found that the local failure mode and ultimate ductility of dual phase steels are closely related to the stress state in the material. Under plane stress condition with free lateral boundary, one dominant shear band develops and leads to final failure of the material. However, if the lateral boundary is constrained, splitting failure perpendicular to the loading direction is predicted with much reduced ductility. On the other hand, under plane strain loading condition, commonly observed necking phenomenon is predicted which leads to the final failure of the material. These predictions are in reasonably good agreement with experimental observations.  相似文献   

7.
This work presents a model to represent ductile failure (i.e. failure controlled by nucleation, growth and coalescence) of materials whose irreversible deformation is controlled by several plastic or viscoplastic deformation mechanisms. In addition work hardening may result from both isotropic and kinematic hardening. Damage is represented by a single variable representing void volume fraction. The model uses an additive decomposition of the plastic strain rate tensor. The model is developed based on the definition of damage dependant effective scalar stresses. The model is first developed within the generalized standard material framework and expressions for Helmholtz free energy, yield potential and dissipation potential are proposed. In absence of void nucleation, the evolution of the void volume fraction is governed by mass conservation and damage does not need to be represented by state variables. The model is extended to account for void nucleation. It is implemented in a finite element software to perform structural computations. The model is applied to three case studies: (i) failure by void growth and coalescence by internal necking (pipeline steel) where plastic flow is either governed by the Gurson–Tvergaard–Needleman model or the Thomason model, (ii) creep failure (Grade 91 creep resistant steel) where viscoplastic flow is controlled by dislocation creep or diffusional creep and (iii) ductile rupture after pre-compression (aluminum alloy) where kinematic hardening plays an important role.  相似文献   

8.
The effects of void band orientation and crystallographic anisotropy on void growth and linkage have been investigated. 2D model materials were fabricated by laser drilling a band of holes into the gage section of sheet tensile samples using various orientation angles with respect to the tensile axis normal. Both copper and magnesium sheets have been studied in order to examine the role of crystallographic anisotropy on the void growth and linkage processes. The samples were pulled in uniaxial tension inside the chamber of an SEM, enabling a quantitative assessment of the growth and linkage processes. The void band orientation angle has a significant impact on the growth and linkage of the holes in copper. As the void band orientation angle is increased from 0° to 45°, the processes of coalescence and linkage are delayed to higher strain values. Furthermore, the mechanism of linkage changes from internal necking to one dominated by shear localization. In contrast, the void band orientation does not have a significant impact on the void growth and linkage processes in magnesium. Void growth in these materials occurs non-uniformly due to interactions between the holes and the microstructure. The heterogeneous nature of deformation in magnesium makes it difficult to apply a coalescence criterion based on the void dimensions. Furthermore, the strain at failure does not show a relationship with the void band orientation angle. Failure associated with twin and grain boundaries interrupts the plastic growth of the holes and causes rapid fracture. Therefore, the impact of the local microstructure outweighs the effects of the void band orientation angle in this material.  相似文献   

9.
Hydrostatic stress can affect the non-elastic deformation and flow stress of polymeric materials and certain metallic alloys. This sensitivity to hydrostatic stress can also influence the fracture toughness of ductile materials, which fail by void growth and coalescence. These materials typically contain a non-uniform distribution of voids of varying size-scales and void shapes. In this work, the effects of void shape and microvoid interaction in pressure-sensitive materials are examined via a two-prong approach: (i) an axisymmetric unit-cell containing a single ellipsoidal void and (ii) a plane-strain unit-cell consisting of a single large void and a population of discrete microvoids. The representative material volume in both cases is subjected to physical stress states similar to highly stressed regions ahead of a crack. Results show that oblate voids and microvoid cavitation can severely reduce the critical stress of the material. These effects can be compounded under high levels of pressure-sensitivity. In some cases, the critical stress responsible for rapid void growth is reduced to levels comparable to the yield strength of the material. The contribution of void shape and pressure-sensitivity to the thermal- and moisture-induced voiding phenomenon in IC packages is also discussed.  相似文献   

10.
We have examined the problem of the dynamic growth of a single spherical void in an elastic-viscoplastic medium, with a view towards addressing a number of problems that arise during the dynamic failure of metals. Particular attention is paid to inertial, thermal and rate-dependent effects, which have not previously been thoroughly studied in a combined setting. It is shown that the critical stress for unstable growth of the void in the quasistatic case is strongly affected by the thermal softening of the material (in adiabatic calculations). Thermal softening has the effect of lowering the critical stress, and has a stronger influence at high strain hardening exponents. It is shown that the thermally diffusive case for quasistatic void growth in rate-dependent materials is strongly affected by the initial void size, because of the length scale introduced by the thermal diffusion. The effects of inertia are quantified, and it is demonstrated that inertial effects are small in the early stages of void growth and are strongly dependent on the initial size of the void and the rate of loading. Under supercritical loading for the inertial problem, voids of all sizes achieve a constant absolute void growth rate in the long term. Inertia first impedes, but finally promotes dynamic void growth under a subcritical loading. For dynamic void growth, the effect of rate-hardening is to reduce the rate of void growth in comparison to the rate-independent case, and to reduce the final relative void growth achieved.  相似文献   

11.
Substantial void growth in metals constitutes a problem in many industrial operations that utilize superplastic deformation. This is because of the likelihood of material failure due to such growth. Hence, there is a need to study void growth mechanisms in an effort to understand the parameters governing it. In this work, numerical and experimental studies of void growth, and the parameters that affect it, in a superplastically deforming (SPD) metal have been performed. In the numerical studies, using the finite-element method, a 1×2 sized thin plate (i.e. plane stress conditions) of a viscoplastic material with pre-existing holes has been subjected to a constant extension rate. The experimental studies were performed under similar conditions to the numerical ones and provided for qualitative comparison. The parameters affecting void growth in SPD are: m (the strain-rate sensitivity), void size (i.e. diameter) and the number (density) of existing voids. The results showed that increased m values produced strengthening and decreased the rate of void growth. In addition, larger initial void size (or, equivalently, a larger initial void fraction) had the effect of weakening the specimen through causing accelerated void growth. Finally, multiple holes had the effect of increasing the metal ductility by reducing the extent of necking and its onset. This was realized through diffusing the plastic deformation at the different hole sites and reducing the stress concentration. The numerical results were in good qualitative agreement with the experiment and suggested the need to refine existing phenomenological void growth models to include the dependence on the void fraction.  相似文献   

12.
A micromechanics model based on the theoretical framework of plastic localization into a band introduced by Rice is developed. The model consists of a planar band with a square array of equally sized cells, with a spherical void located in the centre of each cell. The periodic arrangement of the cells allows the study of a single unit cell for which fully periodic boundary conditions are applied. The micromechanics model is applied to analyze failure by ductile rupture in experiments on double notched tube specimens subjected to combined tension and torsion carried out by the present authors. The stress state is characterized in terms of the stress triaxiality and the Lode parameter. Two rupture mechanisms can be identified, void coalescence by internal necking at high triaxiality and void coalescence by internal shearing at low triaxiality. For the internal necking mechanism, failure is assumed to occur when the deformation localizes into a planar band and is closely associated with extensive void growth until impingement of voids. For the internal shearing mechanism, a simple criterion based on the attainment of a critical value of shear deformation is utilized. The two failure criteria capture the transition between the two rupture mechanisms successfully and are in good agreement with the experimental result.  相似文献   

13.
A mechanism of ductile fracture involving the interaction of relatively large voids with small-scale voids is studied by a computational model. The larger voids are described as circular cylindrical holes arranged in a doubly periodic array in the initial state. In the matrix material between these voids the nucleation and growth of much smaller voids is accounted for by using approximate constitutive equations for a ductile, porous medium. The computations show bands of highly localized straining and void growth, initiating at the surfaces of larger voids and growing into the matrix material, until the bands connect two neighbouring voids. The materials are analysed both under plane strain conditions and under conditions approximating those in a round tensile bar. The failure strains obtained under different principal stress ratios show rather good agreement when plotted against a measure of the stress-triaxiality.  相似文献   

14.
In this paper, a dynamic failure model in ductile materials under the action of a mean tensile stress is developed. The model proposed takes into account nucleation and growth of void as part of the failure process under dynamic loading conditions. In the evolution of porosity , work-hardening behavior and rate-dependent effects are included. Numerical simulations of aluminum, aluminum alloy and OFHC copper spallation processes are performed. The results of computation are in fair agreement with experimental results.Support of this work by the special grant No.9187004 from Natural Science Fundation of China is gratefully acknowledged  相似文献   

15.
Direct measurement of uniaxial true stress-strain behavior for ductile engineering materials is not possible when necking occurs in standard tensile test specimens. A procedure is presented which converts standard specimen test data to a true stress-strain relation postulated as valid for higher strains. A series of finite element test specimen simulations demonstrates the correction algorithm rationale for HY-100 steel. Predicted specimen behavior was in close agreement with reported experimental data.The combined influence of specimen boundary conditions and material stress-strain behavior is discussed. Results suggest that specimen behavior may be modeled correctly without the use of auxiliary conditions, such as geometric imperfections or material instability, to trigger specimen necking.  相似文献   

16.
Spall fracture and other rapid tensile failures in ductile materials are often dominated by the rapid growth of voids. Recent research on the mechanics of void growth clearly shows that void nucleation may be represented as a bifurcation phenomenon, wherein a void forms spontaneously followed by highly localized plastic flow around the new void. Although thermal, viscoplastic, and work hardening effects all play an essential role in the earliest stages of nucleation and growth, the flow becomes dominated by spherical radial inertia, which soon causes all voids to grow asymptotically at the same rate, regardless of differences in initial conditions or constitutive details, provided only that there is the same density of matrix material and the same excess loading history beyond the cavitation stress.These two facts, initiation by bifurcation at a cavitation stress, at which a void first appears, and rapid domination by inertia, are used to postulate a simple, but physically realistic, model for nucleation and early growth of voids in a ductile material under rapid tensile loading. A reasonable statistical distribution for the cavitation stress at various nucleation sites and a simple similarity solution for inertially dominated void growth permit a simple calculation of the initiation and early growth of porosity in the material.Parametric analyses are presented to show the effect that loading rate, peak loading stress, density of nucleation sites, physical properties of the material, etc. have on the applied pressure and distribution of void sizes when a critical porosity is reached.  相似文献   

17.
The mechanics of necking inception in dynamically-stretched notched specimens have been investigated. For that task, a systematic experimental campaign of quasi-static and dynamic tensile tests on martensitic steel specimens has been conducted. Samples with and without notches have been considered. Unlike the quasi-static tests, the dynamically-tested notched samples revealed that, under certain loading conditions, flow localization may develop away from the groove. The experimental results presented in this investigation show that the presence of sharp geometrical imperfections in ductile materials subjected to dynamic loading does not necessarily dictate the necking and fracture locus.  相似文献   

18.
李国琛  张以增 《力学学报》1990,22(3):302-310
用平面应力有限元方法分析空洞模型以模拟一种双相钢板材在成型过程中所遇到的微空洞损伤,经试算可使模型的总体和局部的响应与已有的实验相一致,由此可提供描述该材料的损伤本构参数并研究局部剪切带和扩散型颈缩等分叉现象,临界应变值的分布形成了成型极限图中的下限曲线,当空洞模型的总体应力急剧下降或微裂纹开始出现,其相应的总体应变值提供了上限曲线。  相似文献   

19.
李棠  王清远  岳珠峰 《实验力学》2006,21(6):763-768
用轴对称圆棒静拉伸实验研究了铝合金2A12韧性断裂的特点,并探讨了临界空穴扩张比参数-VGC在实验材料上的适用性。实验测试了实验材料的拉伸特性参数及VGC参数。实验证实实验材料在不同应力状态下会发生断裂形式的转变,光滑试样表现为剪切破坏,而缺口试样为拉伸破坏,VGC参数对材料的断裂形式较为敏感。用SEM观测了试样断口显示缺口试样为空穴聚合型断裂机制。VGC参数只适用于以拉伸型断裂为主的缺口试样,对以剪切断裂为主的光滑拉伸试样不适用。  相似文献   

20.
We present a framework for a self-consistent theory of spall fracture in ductile materials, based on the dynamics of void nucleation and growth. The constitutive model for the material is divided into elastic and “plastic” parts, where the elastic part represents the volumetric response of a porous elastic material, and the “plastic” part is generated by a collection of representative volume elements (RVEs) of incompressible material. Each RVE is a thick-walled spherical shell, whose average porosity is the same as that of the surrounding porous continuum, thus simulating void interaction through the resulting lowered resistance to further void growth. All voids nucleate and grow according to the appropriate dynamics for a thick-walled sphere made of incompressible material. The macroscopic spherical stress in the material drives the response in all volume elements, which have a distribution of critical stresses for void nucleation, and the statistically weighted sum of the void volumes of all RVEs generates the global porosity. Thus, macroscopic pressure, porosity, and a distribution of growing microscopic voids are fully coupled dynamically. An example is given for a rate-independent, perfectly plastic material. The dynamics of void growth gives rise to a rate effect in the macroscopic material even though the parent material is rate independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号