首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Coating of artificial surfaces with RGD (= arginine‐glycine‐aspartate) peptides to enhance cell adhesion is an ongoing issue. Thereby, the physiological adhesion process to the extra‐cellular matrix (ECM) is mimicked by the peptide coating, leading to a strong cell‐surface contact, followed by spreading and proliferation of the cells. For comparable cell adhesion studies, it is important to know the density of the RGD peptides on the surface. Here, we present an approach to determine the amount of bound cyclic RGD peptide by radio labeling with 125I of a tyrosine‐containing RGD peptide on different materials surfaces (poly(methyl methacrylate) (PMMA), titanium, and silicon). For all surfaces, the amount of bound peptides is in the range of pmol/cm1.  相似文献   

2.
Despite extensive recent reports on combinatorially selected inorganic-binding peptides and their bionanotechnological utility as synthesizers and molecular linkers, there is still only limited knowledge about the molecular mechanisms of peptide binding to solid surfaces. There is, therefore, much work that needs to be carried out in terms of both the fundamentals of solid-binding kinetics of peptides and the effects of peptide primary and secondary structures on their recognition and binding to solid materials. Here we discuss the effects of constraints imposed on FliTrx-selected gold-binding peptide molecular structures upon their quantitative gold-binding affinity. We first selected two novel gold-binding peptide (AuBP) sequences using a FliTrx random peptide display library. These were, then, synthesized in two different forms: cyclic (c), reproducing the original FliTrx gold-binding sequence as displayed on bacterial cells, and linear (l) dodecapeptide gold-binding sequences. All four gold-binding peptides were then analyzed for their adsorption behavior using surface plasmon resonance spectroscopy. The peptides exhibit a range of binding affinities to and adsorption kinetics on gold surfaces, with the equilibrium constant, Keq, varying from 2.5x10(6) to 13.5x10(6) M(-1). Both circular dichroism and molecular mechanics/energy minimization studies reveal that each of the four peptides has various degrees of random coil and polyproline type II molecular conformations in solution. We found that AuBP1 retained its molecular conformation in both the c- and l-forms, and this is reflected in having similar adsorption behavior. On the other hand, the c- and l-forms of AuBP2 have different molecular structures, leading to differences in their gold-binding affinities.  相似文献   

3.
Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide ??DKNLQLH?? was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.  相似文献   

4.
The use of synthetic peptides containing adhesive sequences, such as the Arg-Gly-Asp (RGD) motif, represents a promising strategy to control biological interactions at the cell–material interface. These peptides are known to improve the tissue–material contact owing to highly specific binding to cellular membrane receptors known as integrins, thereby promoting the adhesion, migration and proliferation of cells. The peptides were coupled to borosilicate glass and titanium surfaces using silanisation chemistry. A tryptophan residue was incorporated into the amino acid sequences of selected peptides to facilitate the detection of the covalently bound peptides. Successful peptide immobilisation was proven by fluorimetric measurements. The confocal imaging analysis suggests a homogeneous distribution of the immobilised peptide across the biomaterial surface. In vitro cell proliferation assays were employed to compare the adhesion potentials of the well-known RGD-containing peptides GRGDSP, GRADSP and RGDS to the three peptides designed by our group. The results demonstrate that the RGD sequence is not necessarily required to enhance the adhesion of cells to non-biological surfaces. Moreover, it is shown that the number of adhering cells can be increased by changes in the peptide hydrophobicity. Changes in the cytoskeleton are observed depending on the type of RGD-peptide modification.  相似文献   

5.
Bacteriophage (phage) display has been exploited for the purpose of discovering new cancer specific targeting peptides. However, this approach has resulted in only a small number of tumor targeting peptides useful as in vivo imaging agents. We hypothesize that in vivo screening for tumor uptake of fluorescently tagged phage particles displaying multiple copies of an in vivo selected tumor targeting peptide will expedite the development of peptide based imaging agents. In this study, both in vivo selection and in vivo screening of phage displaying foreign peptides were utilized to best predict peptides with the pharmacokinetic properties necessary for translation into efficacious in vivo imaging agents. An in vivo selection of phage display libraries was performed in SCID mice bearing human PC-3 prostate carcinoma tumors. Eight randomly selected phage clones and four control phage clones were fluorescently labeled with AlexaFluor 680 for subsequent in vivo screening and analyses. The corresponding peptides of six of these phage clones were tested as 111In-labeled peptide conjugates for single photon emission computed tomography (SPECT) imaging of PC-3 prostate carcinomas. Two peptide sequences, G1 and H5, were successful as in vivo imaging agents. The affinities of G1 and H5 peptides for cultured PC-3 cells were then analyzed via cell flow cytometry resulting in Kd values of 1.8 μM and 2.2 μM, respectively. The peptides bound preferentially to prostate tumor cell lines compared to that of other carcinoma and normal cell lines, and H5 appeared to possess cytotoxic properties. This study demonstrates the value of in vivo screening of fluorescently labeled phage for the prediction of the efficacy of the corresponding 111In-labeled synthetic peptide as an in vivo SPECT tumor imaging agent.  相似文献   

6.
The adsorption kinetics of an engineered gold binding peptide on gold surface was studied by using both quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy systems. The gold binding peptide was originally selected as a 14-amino acid sequence by cell surface display and then engineered to have a 3-repeat form (3R-GBP1) with improved binding characteristics. Both sets of adsorption data for 3R-GBP1 were fit to Langmuir models to extract kinetics and thermodynamics parameters. In SPR, the adsorption onto the surface shows a biexponential behavior and this is explained as the effect of bimodal surface topology of the polycrystalline gold substrate on 3R-GBP1 binding. Depending on the concentration of the peptide, a preferential adsorption on the surface takes place with different energy levels. The kinetic parameters (e.g., K(eq) approximately 10(7) M(-1)) and the binding energy (approximately -8.0 kcal/mol) are comparable to synthetic-based self-assembled monolayers. The results demonstrate the potential utilization of genetically engineered inorganic surface-specific peptides as molecular substrates due to their binding specificity, stability, and functionality in an aqueous-based environment.  相似文献   

7.
Cell-adhesive peptides derived from extracellular matrix (ECM) proteins are potential candidates for incorporating cell-binding activities into materials for tissue engineering. We have identified a number of cell adhesive peptides from laminins, which are major components of basement membrane ECM. Our goal is the development of synthetic basement membranes using the peptides on scaffolds. We review peptide–polysaccharide complexes, which were prepared by conjugation of the peptides to chitosan and alginate, and the biological activities of the resulting matrices. The peptide–polysaccharide matrices can also be used as a biomaterial for cell transplantation. These studies suggest that the peptide–polysaccharide complexes have the potential to mimic the multifunctional basement membrane and may be useful for tissue engineering.  相似文献   

8.
Four TAT peptide fragments were used to functionalize GaAs surfaces by adsorption from solution. In addition, two well-studied alkylthiols, mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT) were utilized as references to understand the structure of the TAT peptide monolayer on GaAs. The different sequences of TAT peptides were employed in recognition experiments where a synthetic RNA sequence was tested to verify the specific interaction with the TAT peptide. The modified GaAs surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). AFM studies were used to compare the surface roughness before and after functionalization. XPS allowed us to characterize the chemical composition of the GaAs surface and conclude that the monolayers composed of different sequences of peptides have similar surface chemistries. Finally, FT-IRRAS experiments enabled us to deduce that the TAT peptide monolayers have a fairly ordered and densely packed alkyl chain structure. The recognition experiments showed preferred interaction of the RNA sequence toward peptides with high arginine content.  相似文献   

9.
Several cationic antimicrobial peptides (AMPs) have recently been shown to display anticancer activity via a mechanism that usually entails the disruption of cancer cell membranes. In this work, we designed an 18-residue anticancer peptide, SVS-1, whose mechanism of action is designed to take advantage of the aberrant lipid composition presented on the outer leaflet of cancer cell membranes, which makes the surface of these cells electronegative relative to the surface of noncancerous cells. SVS-1 is designed to remain unfolded and inactive in aqueous solution but to preferentially fold at the surface of cancer cells, adopting an amphiphilic β-hairpin structure capable of membrane disruption. Membrane-induced folding is driven by electrostatic interaction between the peptide and the negatively charged membrane surface of cancer cells. SVS-1 is active against a variety of cancer cell lines such as A549 (lung carcinoma), KB (epidermal carcinoma), MCF-7 (breast carcinoma), and MDA-MB-436 (breast carcinoma). However, the cytotoxicity toward noncancerous cells having typical membrane compositions, such as HUVEC and erythrocytes, is low. CD spectroscopy, appropriately designed peptide controls, cell-based studies, liposome leakage assays, and electron microscopy support the intended mechanism of action, which leads to preferential killing of cancerous cells.  相似文献   

10.
The aggregation of peptides into amyloid fibrils plays a crucial role in various neurodegenerative diseases. While it has been generally recognized that fibril formation in vivo may be greatly assisted or accelerated by molecular surfaces, such as cell membranes, little is known about the mechanism of surface-mediated fibrillation. Here we study the role of adsorbed Alzheimer's amyloid-β peptide (Aβ42) on surface-mediated fibrillation using polymer coatings of varying hydrophobicity as well a supported lipid bilayer membrane. Using single molecule fluorescent tracking and atomic force microscopy imaging, we show that weakly adsorbed peptides with two-dimensional diffusivity are critical precursors to fibril growth on surfaces. This growth mechanism is inhibited on the highly hydrophilic surface where the surface coverage of adsorbed peptides is negligible or on the highly hydrophobic surface where the diffusion constant of the majority of adsorbed peptides is too low. Physical properties that favor weakly adsorbed peptides with sufficient translational mobility can locally concentrate peptide molecules on the surface and promote inter-peptide interaction via two-dimensional confinement, leading to fibrillation at Aβ peptide concentration many orders of magnitude below the critical concentration for fibrillation in the bulk solution.  相似文献   

11.
Dermcidin (DCD) is a human peptide composed of 110 amino acids. When secreted into sweat, DCD undergoes postsecretory proteolytic processing to give the short antimicrobial peptides SSL-23 and SSL-25. As an initial phase of studies directed toward understanding the structural basis of the biological functions of these peptides, we chemically synthesized naturally occurring SSL-23 and SSL-25, as well as the artificial sequences SSL-21 and SSL-27, and analyzed their molecular interaction with bacterial and mammalian model surfaces. While dynamic-coating HPLC and CD spectroscopy revealed that the four SSL peptides selectively bound to a bacterial model membrane containing 1,2-dimyristoyl phosphatidylglycerol (DMPG) and underwent large structural changes, 31P NMR studies of the liposomes suggested that the attractive interaction between the peptides and DMPG did not lead to ion-pore formation or disruption of the model membrane. Our results strongly indicate that the SSL peptides express their selectivity to microorganisms by recognizing the head groups of their cell surface lipid.  相似文献   

12.
Phage display libraries offer a strategy to isolate peptide ligands to target proteins and to define potential interaction sites between proteins. Recent studies have indicated a novel utility for phage display in that bacteriophage engineered to express peptide ligands to specific cell surface receptors are internalized by mammalian cells. Thus, reporter genes such as green fluorescent protein and lacZ harbored in the phage genome can be delivered to mammalian cells using targeting peptides displayed on the surface of phage. There is also the possibility to generate novel types of peptide libraries expressed intracellularly using a phage capable of inducing expression of its coding genes in human cells.  相似文献   

13.
Five peptide sequences corresponding to the E1 protein of GBV-C [NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18), and AQLVGELGSLYGPLSVSA (P22)] were synthesized because they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP)-vesicle interaction. In this work the interaction of these peptides with the HIV-1 FP, as well as with membrane models, was analyzed to corroborate their inhibition ability and to understand if the interaction with the fusion peptide takes place in solution or at the membrane level. Several studies were carried out on aggregation and membrane fusion, surface Plasmon resonance, and conformational analysis by circular dichroism. Moreover, in vitro toxicity assays, including cytotoxicity studies in 3T3 fibroblasts and hemolysis assays in human red blood cells, were performed to evaluate if these peptides could be potentially used in anti-HIV-1 therapy. Results show that P10 is not capable of inhibiting membrane fusion caused by HIV-1 and it aggregates liposomes and fuses membranes, thus we decided to discard it for futures studies. P18 and P22 do not inhibit membrane fusion, but they inhibit the ability of HIV-1 FP to form pores in bilayers, thus we have not discarded them yet. P7 and P8 were selected as the best candidates for future studies because they are capable of inhibiting membrane fusion and the interaction of HIV-1 FP with bilayers. Therefore, these peptides could be potentially used in future anti-HIV-1 research.  相似文献   

14.
We report the formation of a fullerene-peptide conjugate via the incorporation of a fullerene substituted phenylalanine derivative, "Bucky amino acid" (Baa), to a cationic peptide, which acts as a passport for intracellular delivery, enabling transport of a range of sequences into HEK-293, HepG2, and neuroblastoma cells where the peptides in the absence of the fullerene amino acid cannot enter the cell. Delivery of the fullerene species to either the cytoplasm or nucleus of the cell is demonstrated. Fullerene peptides based on the nuclear localization sequence (NLS), H-Baa-Lys(FITC)-Lys-Lys-Arg-Lys-Val-OH, can actively cross over the cell membrane and accumulate significantly around the nucleus of HEK-293 and neuroblastoma cells, while H-Baa-Lys(FITC)-Lys8-OH accumulates in the cytoplasm. Cellular studies show that the uptake for the anionic peptide Baa-Lys(FITC)Glu4Gly3Ser-OH is greatly reduced in comparison with the cationic fullerene peptides of the same concentration. The hydrophobic nature of the fullerene assisting peptide transport is suggested by the effect of gamma-cyclodextrin (CD) in lowering the efficacy of transport. These data suggest that the incorporation of a fullerene-based amino acid provides a route for the intracellular delivery of peptides and as a consequence the creation of a new class of cell penetrating peptides.  相似文献   

15.
Antigenic peptides or cancer peptide vaccines can be directly delivered to cancer patients to produce immunologic responses against cancer cells. Specifically, designed peptides can associate with Major Histocompatibility Complex (MHC) class I or II molecules on the cell surface of antigen presenting cells activating anti-tumor effector mechanisms by triggering helper T cell (Th) or cytotoxic T cells (CTL). In general, high binding to MHCs approximately correlates with in vivo immunogenicity. Consequently, a molecular docking technique was run on a library of novel discontinuous peptides predicted by PEPOP from Human epidermal growth factor receptor 2 (HER2 ECD) subdomain III. This technique is expected to improve the prediction accuracy in order to identify the best MHC class I and II binder peptides. Molecular docking analysis through GOLD identified the peptide 1412 as the best MHC binder peptide to both MHC class I and II molecules used in the study. The GOLD results predicted HLA-DR4, HLA-DP2 and TCR as the most often targeted receptors by the peptide 1412. These findings, based on bioinformatics analyses, can be exploited in further experimental analyses in vaccine design and cancer therapy to find possible proper approaches providing beneficial effects.  相似文献   

16.
The catalytic effect of various sequential peptides for silica biomineralization has been studied. In peptide sequence design, lysine (K) and histidine (H) were selected as the standard amino acids and aspartic acid (D) was selected to promote the charge relay effects, such as in the enzyme active site. Therefore, homopolypeptides (K(10) and H(10)), block polypeptides (K(5)D(5) and H(5)D(5)), and alternate polypeptides [(KD)(5) and (HD)(5)] were designed, and the dehydration reaction ability of trimethylethoxysilane was investigated as a quantitative model of silica mineralization. The catalytic activity per basic residue of alternate polypeptide was the highest because of the charge relay effects at the surface of the peptide. In silica mineralization using tetraethoxysilane, spherical silica particles were obtained, and their size is related to the catalytic activities of the peptides in the model systems. From these results, the effect of the functional group combination by the peptide sequence design enables the control of the efficiency of mineralization and preparation of specific inorganic materials.  相似文献   

17.
Major Histocompatibility Complex (MHC) is a cell surface glycoprotein that binds to foreign antigens and presents them to T lymphocyte cells on the surface of Antigen Presenting Cells (APCs) for appropriate immune recognition. Recently, studies focusing on peptide-based vaccine design have allowed a better understanding of peptide immunogenicity mechanisms, which is defined as the ability of a peptide to stimulate CTL-mediated immune response. Peptide immunogenicity is also known to be related to the stability of peptide-loaded MHC (pMHC) complex. In this study, ENCoM server was used for structure-based estimation of the impact of single point mutations on pMHC complex stabilities. For this purpose, two human MHC molecules from the HLA-B*27 group (HLA-B*27:05 and HLA-B*27:09) in complex with four different peptides (GRFAAAIAK, RRKWRRWHL, RRRWRRLTV and IRAAPPPLF) and three HLA-B*44 molecules (HLA-B*44:02, HLA-B*44:03 and HLA-B*44:05) in complex with two different peptides (EEYLQAFTY and EEYLKAWTF) were analyzed. We found that the stability of pMHC complexes is dependent on both peptide sequence and MHC allele. Furthermore, we demonstrate that allele-specific peptide-binding preferences can be accurately revealed using structure-based computational methods predicting the effect of mutations on protein stability.  相似文献   

18.
Peptide adhesion on semiconductor surfaces is quantitatively investigated by atomic force microscopy. The selected peptides are shown to cluster at the surface, with the larger, higher, and softer clusters appearing on the surfaces with lower peptide adhesion. Average cluster diameters vary from 40 nm on GaAs (100) to 300 nm on Si (100). Direct adhesion of the peptides to the surface competes with forming molecular aggregates that offer an overall reduced surface contact.  相似文献   

19.
Poly(ethylene glycol) (PEG) is used as an inert spacer in a wide range of biotechnological applications such as to display peptides and proteins on surfaces for diagnostic purposes. In such applications it is critical that the peptide is accessible to solvent and that the PEG does not affect the conformational properties of the peptide to which it is attached. Using molecular dynamics (MD) simulation techniques, we have investigated the influence of a commonly used PEG spacer on the conformation properties of a series of five peptides with differing physical-chemical properties (YGSLPQ, VFVVFV, GSGGSG, EEGEEG, and KKGKKG). The conformational properties of the peptides were compared (a) free in solution, (b) attached to a PEG-11 spacer in solution, and (c) constrained to a two-dimensional lattice via a (PEG-11)(3) spacer, mimicking a peptide displayed on a surface as used in microarray techniques. The simulations suggest that the PEG spacer has little effect on the conformational properties of small neutral peptides but has a significant effect on the conformational properties of small highly charged peptides. When constrained to a two-dimensional surface at peptide densities similar to those used experimentally, it was found that the peptides, in particular the polar and nonpolar peptides, aggregated strongly. The peptides also partitioned into the PEG layer. Potentially, this means that at high packing densities only a small fraction of the peptide attached to the surface would in fact be accessible to a potential interaction partner.  相似文献   

20.
The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the “undruggable” issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D-amino acids, or connecting D-amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3 . In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the “undruggable” issue and provide alternative strategies for overcoming cancer resistance in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号