首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. The device will be employed to control fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron. Furthermore, with the detection of the free precession of co-located 3He/129Xe nuclear spins it can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out. Characteristic spin precession times T2 * of up to 60 h were measured. The achieved signal-to-noise ratio of more than 5000:1 leads to an expected sensitivity level (Cramer-Rao lower bound) of δB≈1 fT after an integration time of 220 s and of δB≈10-4 fT after one day. By means of a co-located 3He/129Xe magnetometer, noise sources inherent in the magnetometer could be investigated, showing that CRLB is fulfilled, at least down to δB≈10-2 fT. The reason for such a high sensitivity is that free precessing 3He (129Xe) nuclear spins are almost completely decoupled from the environment. Therefore, this type of magnetometer is particularly attractive for precision field measurements where long-term stability is required.  相似文献   

2.
A new measurement ofΔσ T for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was produced with the3H(d, n)4 He reaction; proton polarization over 90% was achieved in a frozen spin target of 20 cm3 volume. The measurement yields the valueΔσ T=(?126±21±14) mb. The result of a simple phase shift analysis for the3 S 1?3 D 1 mixing parameter ε1 is presented and compared with the theoretical potential model predictions.  相似文献   

3.
Thermal cycling of the lattice temperature was used to determine the nuclear spin lattice relaxation of191m IrFe in polarizing fields of 0.05 to 1.3 T. At low temperatures, the relaxation time is not very much shorter than the lifetime of191m Ir. In the first part of the paper, the master equation formalism is extended to include a finite lifetime. Our result for the reduced relaxation constant, γ2 C K =(1.48±0.11)·1014 K s?1 T?2 (high field limit) is in serious disagreement with that of a spin echo measurement of193IrFe, but fits much better into the general systematics. A comparison of relaxation rates for 3d-, 4d-, and 5d-impurities in Fe is given. As a by-product, a Kapitza conductivity constant ofl K =1.5 mW cm?2 K?4±30% was found between Fe and dilute3He/4He.  相似文献   

4.
The interactions of the aluminum acceptor impurity in silicon are investigated using polarized negative muons. The polarization of negative muons is studied as a function of temperature on crystalline silicon samples with phosphorus (1.6×1013 cm?3) and boron (4.1×1018 cm?3) impurities. The measurements are performed in a magnetic field of 4.1 kG perpendicular to the muon spin, in the temperature range from 4 to 300 K. The experimental results show that, in phosphorus-doped n-type silicon, an μAl acceptor center is ionized in the temperature range T>50 K. For boron-doped silicon, the temperature dependence of the shift of the muon spin precession frequency is found to deviate from the 1/T Curie law in the temperature range T ? 50 K. The interactions of a μAl acceptor that may be responsible for the effects observed in the experiment are analyzed.  相似文献   

5.
A differential measurement of the spin rotation of Dy160 in the 2+ rotational state was performed by using liquid sources of TbCl3 solved in 3M HCl and applying an external magnetic field of 33 500 Gauss. No change of the Larmor precession frequency could be detected within the first 10·10?9 s. It is concluded that the ground state of the electronic shell of Dy+++ is reached in 6·10?10 s after theβ-decay of Tb160. The valueg R=+0.364±0.011 was derived using 〈r?3eff=8.92 a. u. for the 4f-shell of Dy+++. A comparison with the result ofCohen who studied the Mössbauer-effect in Fe2Dy shows that the value of 〈r?3eff must be 10% larger in this compound. A measurement of the effective magnetic field at the position of the nucleus in a source of terbium metal was performed for different temperatures. It revealed a temperature dependence which is very similar to the paramagnetic susceptibility χ(T). We observed a strong attenuation ofγ γ-angular correlations in the 2+ rotational state. For liquid sources of TbCl3 solved in 3M HCl the following attenuation parameters were measured:
$$\begin{gathered} \lambda _2 = (0.122 \pm 0.013) \cdot 10^9 {\text{s}}^{ - {\text{1}}} , \hfill \\ \lambda _4 = (0.235 \pm 0.024) \cdot 10^9 {\text{s}}^{ - {\text{1}}} . \hfill \\ \end{gathered}$$  相似文献   

6.
The HAPPEX Collaboration at Jefferson Lab has measured the transverse beam spin asymmetries (AT) for elastic electron scattering from proton and 4He targets. The experiment was conducted using a vertically polarized electron beam of energy ∼ 3 GeV, at a Q 2 ∼ 0.1 GeV^2 and a scattering angle θlab ∼ 6° . The preliminary results are reported here. The 4He measurement is the first measurement of AT from a nucleus. AT for 4He is non-negligible; therefore, it will be necessary to make measurements of AT for future parity-violating experiments using nuclear targets.  相似文献   

7.
The primary goal of the HERMES experiment is the study of the spin structure of the nucleon. Results on the measured inclusive and semi-inclusive hadron asymmetries using a polarized positron beam on polarized 3He, hydrogen and deuterium targets are here presented. In the covered kinematic range, 0.023<x Bj <0.6 and 1 GeV2<Q 2<10GeV2 the polarized quark distribution were determined for all up (u+?u) and down (d+?) quarks, and separately for valence and sea quarks. The up quark polarization is positive, and the down quark polarization is negative. The polarization of the sea is consistent with zero in the measured range. A first indication of a positive gluon polarization is presented, based on the measured spin asymmetry in the photo-production of hadron pairs with high transverse momentum p T . This asymmetry is negative, which is in contrast to the measured positive asymmetry for inclusive experiments.  相似文献   

8.
The measured precission of the 20O(2+) spin in the magnetic experienced on recoiled in polarized iron implies a negative g-factor. A supplementary measurement on the 16O(3?) state yields for the static field at oxygen in iron the limits 0 < Hstatic < +90 kG.  相似文献   

9.
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. Characteristic spin precession times $T_2^\ast$ of up to 115 h were measured in low magnetic fields (about 1 μT) and in the regime of motional narrowing. With the detection of the free precession of co-located 3He/129Xe nuclear spins (clock comparison), the device can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out in the weighted frequency difference, i.e., Δω?=?ω He ???γ He /γ Xe ·ω Xe . We report on searches for Lorentz violating signatures by monitoring the Larmor frequencies of co-located 3He/129Xe spin samples as the laboratory reference frame rotates with respect to distant stars (sidereal modulation).  相似文献   

10.
Macroscopic samples of near-surface water in pores or fractures of rocks down to 100 m and deeper are studied by the measurement of proton relaxation and echo in the Earth’s magnetic field. The excitation and reception of the surface nuclear magnetic resonance (SNMR) signal is accomplished with the help of an antenna, circle or 8-shaped (for the minimization of the outer electromagnetic jamming influence), placed at the surface. The frequency of magnetic resonance in the case considered amounts to several kilohertz, the dead time of the instrumentation to several milliseconds. Water in extremely small pores of water-resisting rocks (e.g., in argillaceous grounds), is chemically bound, crystallization or frozen water has smaller times of spin relaxation and is not registered. The distribution of water concentration with depth is determined by inversion of an integral equation, including the model and measured dependences of the SNMR signal against the intensity of excitation. The current state of the art of the SNMR sounding and perspectives of this method on the basis of free induction decay and spin echo detection and relaxation times measurement are presented. Free induction decayT 2 * equal to 60 ms, spin-echoT 2 equal to 220 ms, and inversion-recoveryT 1 equal to 700 ms relaxation times have been measured for medium-to coarse-grained sand aquifer. Microscopic characteristics of the aquifer — longitudinal relaxivity (7·10?3 cm/s), transverse relaxivity (3.5·10?2 cm/s), and local magnetic field gradient (2·10?2 G/cm) — have been estimated from experimental data. The importance of spin relaxation and echo measurements for obtaining the information about the microstructure of pores and fractures, as well as filtration, properties of aquifers and diamagnetic, paramagnetic and hydrocarbon contamination, is emphasized.  相似文献   

11.
The temperature dependence of the critical heat currentQ c in He II has been measured in the temperature region 3 · 10?5 (?K)<T λ?T<1.2 · 10?2 (?K). The result Qc∫ (T λ?T)1.07±0.01is consistent with a divergent mutual friction nearT λ proposed recently byAhlers.  相似文献   

12.
Two polarization phenomena in Compton scattering by polarized electrons were investigated. In the first experiment, the rotation of the polarization plane of photons passing through magnetized iron and gadolinium was measured. This effect arises from a spin dependence of the Compton forward scattering amplitude. For 228 and 333 keV photons and iron absorbers, the observed rotation angles areφ 0=(3.90±0.57) ×10?3 rad · cm?2 and (4.75±0.58)×10?3 rad · cm?2, respectively. Secondly, the orientation of the photon polarization plane after scattering of unpolarized photons by polarized electrons was measured. This experiment tests time reversal invariance in quantum electrodynamics. No dependence of the polarization plane on the direction of the electron spin was found within 2×10?3.  相似文献   

13.
The quadrupole 209Bi spin–spin and spin–lattice relaxation were studied within 4.2–300 K for pure and doped Bi4Ge3O12 single crystals which exhibit, as was previously found, anomalous magnetic properties. The results revealed an unexpectedly strong influence of minor amounts of paramagnetic dopants (0.015–0.5 mol.%) on the relaxation processes. Various mechanisms (quadrupole, crystal electric field, electron spin fluctuations) govern the spin–lattice relaxation time T 1 in pure and doped samples. Unlike T 1, the spin–spin relaxation time T 2 for pure and Nd-doped samples was weakly dependent on temperature within 4.2–300 K. Doping Bi4Ge3O12 with paramagnetic atoms strongly elongated T 2. The elongation, although not so strong, was also observed for pure and doped crystals under the influence of weak (~30 Oe) external magnetic fields. To confirm the conclusion about strong influence of crystal field effects on the temperature dependence of T 1 in the temperature range 4.2–77 K, the magnetization vs. temperature and magnetic field was measured for Nd- and Gd-doped Bi4Ge3O12 crystals using a SQUID magnetometer. The temperature behavior of magnetic susceptibility for the Nd-doped crystal was consistent with the presence of the crystal electric field effects. For the Gd-doped crystal, the Brillouin formula perfectly fitted the curve of magnetization vs. magnetic field, which pointed to the absence of the crystal electric field contribution into the spin–lattice relaxation process in this sample.  相似文献   

14.
We describe a rotation sensor that is based on the detection of the nuclear magnetic resonance signal of129Xe in the gas phase. Under rotation shifts of the signal phase and Larmor frequency occur, which can be used to determine orientational angle variations with an accuracy of about 1o and rotation rates of 0.4 mHz to 5 Hz with a precision of 0.4 mHz during the measurement time, which is of the order of 3×T 2, the nuclear spin relaxation time. The nuclear spin species is polarized by spin-exchange collisions with optically pumped ground-state spins of Rb-gas atoms. The Rb atoms also present in the sample are used as a magnetometer to probe the free-induction decay of the nuclear spin ensemble. Polarization, detection, and data processing sheemes are described in detail and the current sensitivity and limitations of this Stuttgart nuclear magnetic resonance (NMR) gyroscope are discussed. Possibilities for further improvements are pointed out.  相似文献   

15.
We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10−5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.  相似文献   

16.
While magnetic properties of the 1D chain [Fe(hyetrz)3](4-bromophenylsulfonate)2 investigated over the temperature range from 300 K to 2 K show paramagnetic behavior, detailed 57Fe Mössbauer and muon spin relaxation measurements reveal an unexpected spin conversion. Approximately ~14 % of the high-spin ions are found to convert to the low-spin state with a transition temperature T 1/2?~?120 K.  相似文献   

17.
We report magnetoresistance measurements of polycrystalline ZrZn2 as a function of temperature (4.2–48K) and magnetic field up to 19 T. The results indicate the presence of both positive and negative contributions to the magnetoresistance. The latter is due to spin fluctuations. Below Tc the resistivity varies with temperature like T2 over the entire field range (0–19 T). The coefficient of the T2 -term decreases with increasing field and fits a H?13 dependence above ~ 10 T, in accordance with theoretical predictions. Complex behaviour of the magnetoresistance is found in the paramagnetic regime above ~ 5 T.  相似文献   

18.
Double spin effects in polarized pp-elastic scattering in the Coulomb nuclear interference (CNI) region are sensitive to small contributions to the nuclear amplitude in addition to Pomeron exchange dominating at high energies. Measurements of double spin asymmetries require external luminosity normalization using collision counts for all spin combinations. Several possible sources of such data from various STAR subsystems were thoroughly analyzed to make the best choice. BBC arrays were found to be free of double spin effects to the level of ~ 2 × 10?4 thus leading to the systematic uncertainty ~10?3 in the value of (A NN + A SS )/2.  相似文献   

19.
The Glauber dynamics of an Ising spin glass with infinite-range interactions and additional static field, h, is investigated near the freezing temperature, Tf. We obtain critical slowing down at and below the de Almeida-Thouless instability line, hc(T), to order (1?T/Tf)3 with algebraic decay of the spin correlations ~t, where ν=12 at Tf and ν≤12 for T<Tf.  相似文献   

20.
We studied the macroscopic effects of nuclear magnetization. Highly polarized xenon is often used to increase the sensitivity in NMR investigations of porous media, diluted liquids or for imaging in the gas phase. In the condensed phase, however, highly nuclear spin polarized xenon also possesses a sizable magnetization due to the nuclear spin density. This results in an additional magnetic field, that is used to measure the polarization of the sample, when only the particle density is known. Here we find Pz≈0.8 corresponding to a spin temperature of 0.5 mK. We use isotopically enriched xenon with a 129Xe abundance of 0.71. At high abundance of 129Xe and high nuclear polarization the dipolar linewidth is considerably reduced. We find for small angle excitation a reduction from 650 Hz to 400 Hz. We investigate this using a thin film geometry. The susceptibility effects of the substrate and the Xe film are treated. The macroscopic angle between the normal of the film and the external field strongly changes the polarization induced line shift and line width. The first follows an expected cos2θ dependence with an understood amplitude the latter however is not understood up to now. Relaxation of 129Xe in the condensed film is observed to be T1=15±1.8 min, much faster than expected. To cite this article: P. Gerhard et al., C. R. Physique 5 (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号