首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider N Brownian particles moving on a line starting from initial positions \(\mathbf{{u}}\equiv \{u_1,u_2,\ldots u_N\}\) such that \(0 . Their motion gets stopped at time \(t_s\) when either two of them collide or when the particle closest to the origin hits the origin for the first time. For \(N=2\) , we study the probability distribution function \(p_1(m|\mathbf{{u}})\) and \(p_2(m|\mathbf{{u}})\) of the maximal distance travelled by the \(1^{\text {st}}\) and \(2^{\text {nd}}\) walker till \(t_s\) . For general N particles with identical diffusion constants \(D\) , we show that the probability distribution \(p_N(m|\mathbf{u})\) of the global maximum \(m_N\) , has a power law tail \(p_i(m|\mathbf{{u}}) \sim {N^2B_N\mathcal {F}_{N}(\mathbf{u})}/{m^{\nu _N}}\) with exponent \(\nu _N =N^2+1\) . We obtain explicit expressions of the function \(\mathcal {F}_{N}(\mathbf{u})\) and of the N dependent amplitude \(B_N\) which we also analyze for large N using techniques from random matrix theory. We verify our analytical results through direct numerical simulations.  相似文献   

2.
In this article we give a new observation of Pesin’s entropy formula, motivated from Mañé’s proof of (Ergod Theory Dyn Sys 1:95–102, 1981). Let \(M\) be a compact Riemann manifold and \(f:\,M\rightarrow M\) be a \(C^1\) diffeomorphism on \(M\) . If \(\mu \) is an \(f\) -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-H \(\ddot{\text {o}}\) lder-continuous(see Definition 1.1), then we have Pesin’s entropy formula, i.e., the metric entropy \(h_\mu (f)\) satisfies $$\begin{aligned} h_{\mu }(f)=\int \sum _{\lambda _i(x)> 0}\lambda _i(x)d\mu , \end{aligned}$$ where \(\lambda _1(x)\ge \lambda _2(x)\ge \cdots \ge \lambda _{dim\,M}(x)\) are the Lyapunov exponents at \(x\) with respect to \(\mu .\) Nonuniformly-H \(\ddot{\text {o}}\) lder-continuous is a new notion from probabilistic perspective weaker than \(C^{1+\alpha }.\)   相似文献   

3.
In this work we extend the results of the reunion probability of \(N\) one-dimensional random walkers to include mixed boundary conditions between their trajectories. The level of the mixture is controlled by a parameter \(c\) , which can be varied from \(c=0\) (independent walkers) to \(c\rightarrow \infty \) (vicious walkers). The expressions are derived by using Quantum Mechanics formalism (QMf) which allows us to map this problem into a Lieb-Liniger gas (LLg) of \(N\) one-dimensional particles. We use Bethe ansatz and Gaudin’s conjecture to obtain the normalized wave-functions and use this information to construct the propagator. As it is well-known, depending on the boundary conditions imposed at the endpoints of a line segment, the statistics of the maximum heights of the reunited trajectories have some connections with different ensembles in Random Matrix Theory. Here we seek to extend those results and consider four models: absorbing, periodic, reflecting, and mixed. In all four cases, the probability that the maximum height is less or equal than \(L\) takes the form \(F_N(L)=A_N\sum _{\varvec{k}\in \Omega _{\text {B}}} \mathrm{e}^{-\sum _{j=1}^Nk_j^2}\mathcal {V}_N(\varvec{k})\) , where \(A_N\) is a normalization constant, \(\mathcal {V}_N(\varvec{k})\) contains a deformed and weighted Vandermonde determinant, and \(\Omega _{\text {B}}\) is the solution set of quasi-momenta \(\varvec{k}\) obeying the Bethe equations for that particular boundary condition.  相似文献   

4.
Three-charge-particle collisions with participation of ultra-slow antiprotons ( \(\overline {\rm {p}}\) ) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: \(\overline {\rm p}+(e^+e^-) \rightarrow \overline {\rm {H}} + e^-\) and \(\overline {\rm p}+(\mu ^+\mu ^-) \rightarrow \overline {\rm {H}}_{\mu } + \mu ^-\) , where \(e^-(\mu ^-)\) is an electron (muon) and \(e^+(\mu ^+)\) is a positron (antimuon) respectively, \(\overline {\rm {H}}=(\overline {\rm p}e^+)\) is an antihydrogen atom and \(\overline {\rm {H}}_{\mu }=(\overline {\rm p}\mu ^+)\) is a muonic antihydrogen atom, i.e. a bound state of \(\overline {\rm {p}}\) and μ +. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.  相似文献   

5.
Energy levels and Λ Λ bond energy of the double- Λ hypernucleus are calculated by considering two- and three-cluster interactions. Interactions between constituent particles are contact interactions for reproducing the low binding energy of nuclei. The effective action is constructed to involve three-body forces. In this paper, we also compare the obtained binding energy result with experimental and other cluster and shell models. The results of all schemes agree very well showing the high accuracy of our method to calculate the other many-body hyperonic nuclei using three-cluster interactions. The experimental values of \(B_{\Lambda {\Lambda }}(^{10}_{\Lambda {\Lambda }}\) Be) = (11.90 ± 0.13) MeV, \(B_{\Lambda {\Lambda }}(^{11}_{\Lambda {\Lambda }}\) Be) = (20.49 ± 1.15) MeV and \(B_{\Lambda {\Lambda }}(^{12}_{\Lambda {\Lambda }}\) Be) = (22.23 ± 1.15) MeV seem to be more compatible with our calculated value of \(B_{\Lambda {\Lambda }}(^{10}_{\Lambda {\Lambda }}\) Be) = 14.04 MeV, \(B_{\Lambda {\Lambda }}(^{11}_{\Lambda {\Lambda }}\) Be) = 19.31 MeV and \(B_{\Lambda {\Lambda }}(^{12}_{\Lambda {\Lambda }}\) Be) = 21.45 MeV in comparison with the other calculated results by Hiyama et al, Gal et al and Guleria et al.  相似文献   

6.
We consider holographic superconductors in a rotating black string spacetime. In view of the mandatory introduction of the \(A_\varphi \) component of the vector potential we are left with three equations to be solved. Their solutions show that the rotation parameter \(a\) influences the critical temperature \(T_\mathrm{c}\) and the conductivity \(\sigma \) in a simple but non-trivial way.  相似文献   

7.
The variation of two-photon absorption (TPA) coefficient \(\beta _{\mathrm{TPA}} (\omega )\) of Si excited at difference photon energy was investigated. The TPA coefficient was measured by using a picosecond pulsed laser with the wavelength could be tuned in a wide photon-energy range. An equivalent RC circuit model was adapted to derive the TPA coefficient \(\beta _{\mathrm{TPA}} (\omega )\) . The results showed that \(\beta _{\mathrm{TPA}} (\omega )\) varied from \(4.2 \times 10^{-4}\) to \(1.17 \times 10^{-3 }\)  cm/GW in the transparent wavelength region \(1.80<\lambda <1.36\,\upmu \) m of Si. The increasing tendency of \(\beta _{\mathrm{TPA}} (\omega )\) with the incident photon energy can be qualitatively interpreted as the photon energy increases from \(E_{\mathrm{ig}}/2\) to nearly \(E_{\mathrm{ig}}\) , the electrons excited from the valance band find an increasing availability of conduction band states. Comparing with the high-energy side transitions, the TPA coefficient in low-energy side is about 10 times too small. This can be attributed that the TPA transition in low-energy side is the process of photon-assisted electron transitions from valence to conduction band occurring between different points in k-space, while is direct transition in high-energy side.  相似文献   

8.
The anisotropic quantum Heisenberg model with Curie-Weiss-type interactions is studied analytically in several variants of the microcanonical ensemble. (Non)equivalence of microcanonical and canonical ensembles is investigated by studying the concavity properties of entropies. The microcanonical entropy \(s(e,\varvec{m})\) is obtained as a function of the energy \(e\) and the magnetization vector \({\varvec{m}}\) in the thermodynamic limit. Since, for this model, \(e\) is uniquely determined by \({\varvec{m}}\) , the same information can be encoded either in \(s(\varvec{m})\) or \(s(e,m_1,m_2)\) . Although these two entropies correspond to the same physical setting of fixed \(e\) and \({\varvec{m}}\) , their concavity properties differ. The entropy \(s_{{\varvec{h}}}(u)\) , describing the model at fixed total energy \(u\) and in a homogeneous external magnetic field \({\varvec{h}}\) of arbitrary direction, is obtained by reduction from the nonconcave entropy \(s(e,m_1,m_2)\) . In doing so, concavity, and therefore equivalence of ensembles, is restored. \(s_{{\varvec{h}}}(u)\) has nonanalyticities on surfaces of co-dimension 1 in the \((u,\varvec{h})\) -space. Projecting these surfaces into lower-dimensional phase diagrams, we observe that the resulting phase transition lines are situated in the positive-temperature region for some parameter values, and in the negative-temperature region for others. In the canonical setting of a system coupled to a heat bath of positive temperatures, the nonanalyticities in the microcanonical negative-temperature region cannot be observed, and this leads to a situation of effective nonequivalence even when formal equivalence holds.  相似文献   

9.
This paper inquires into the concavity of the map \(N\mapsto v_s(N)\) from the integers \(N\ge 2\) into the minimal average standardized Riesz pair-energies \(v_s(N)\) of \(N\) -point configurations on the sphere \(\mathbb {S}^2\) for various \(s\in \mathbb {R}\) . The standardized Riesz pair-energy of a pair of points on \(\mathbb {S}^2\) a chordal distance \(r\) apart is \(V_s(r)= s^{-1}\left( r^{-s}-1 \right) \) , \(s \ne 0\) , which becomes \(V_0(r) = \ln \frac{1}{r}\) in the limit \(s\rightarrow 0\) . Averaging it over the \(\left( \begin{array}{c} N\\ 2\end{array}\right) \) distinct pairs in a configuration and minimizing over all possible \(N\) -point configurations defines \(v_s(N)\) . It is known that \(N\mapsto v_s(N)\) is strictly increasing for each \(s\in \mathbb {R}\) , and for \(s<2\) also bounded above, thus “overall concave.” It is (easily) proved that \(N\mapsto v_{-2}^{}(N)\) is even locally strictly concave, and that so is the map \(2n\mapsto v_s(2n)\) for \(s<-2\) . By analyzing computer-experimental data of putatively minimal average Riesz pair-energies \(v_s^x(N)\) for \(s\in \{-1,0,1,2,3\}\) and \(N\in \{2,\ldots ,200\}\) , it is found that the map \(N\mapsto {v}_{-1}^x(N)\) is locally strictly concave, while \(N\mapsto {v}_s^x(N)\) is not always locally strictly concave for \(s\in \{0,1,2,3\}\) : concavity defects occur whenever \(N\in {\mathcal {C}}^{x}_+(s)\) (an \(s\) -specific empirical set of integers). It is found that the empirical map \(s\mapsto {\mathcal {C}}^{x}_+(s),\ s\in \{-2,-1,0,1,2,3\}\) , is set-theoretically increasing; moreover, the percentage of odd numbers in \({\mathcal {C}}^{x}_+(s),\ s\in \{0,1,2,3\}\) is found to increase with \(s\) . The integers in \({\mathcal {C}}^{x}_+(0)\) are few and far between, forming a curious sequence of numbers, reminiscent of the “magic numbers” in nuclear physics. It is conjectured that these new “magic numbers” are associated with optimally symmetric optimal-log-energy \(N\) -point configurations on \(\mathbb {S}^2\) . A list of interesting open problems is extracted from the empirical findings, and some rigorous first steps toward their solutions are presented. It is emphasized how concavity can assist in the solution to Smale’s \(7\) th Problem, which asks for an efficient algorithm to find near-optimal \(N\) -point configurations on \(\mathbb {S}^2\) and higher-dimensional spheres.  相似文献   

10.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

11.
There are four types of two-Higgs doublet models under a discrete \(Z_2\) symmetry imposed to avoid tree-level flavor-changing neutral current, i.e. type-I, type-II, type-X, and type-Y models. We investigate the possibility to discriminate the four models in the light of the flavor physics data, including \(B_s\) \(\bar{B}_s\) mixing, \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) , \(B\rightarrow \tau \nu \) and \(\bar{B} \rightarrow X_s \gamma \) decays, the recent LHC Higgs data, the direct search for charged Higgs at LEP, and the constraints from perturbative unitarity and vacuum stability. After deriving the combined constraints on the Yukawa interaction parameters, we have shown that the correlation between the mass eigenstate rate asymmetry \(A_{\Delta \Gamma }\) of \(B_{s} \rightarrow \mu ^+ \mu ^-\) and the ratio \(R=\mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{exp}/ \mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{SM}\) could be a sensitive probe to discriminate the four models with future precise measurements of the observables in the \(B_{s} \rightarrow \mu ^+ \mu ^-\) decay at LHCb.  相似文献   

12.
The complete potential energy of a crystal $E\left( {\vec r_{ik} } \right)$ is presented in the form of an expansion in irreducible interactions in clusters containing pairs, triplets, and quadruplets of atoms, situated on A2 lattice sites. The full set of invariants $\left\{ {I_j \left( {\vec r_{ik} } \right)} \right\}$ , on which $\left\{ {I_j \left( {\vec r_{ik} } \right)} \right\}$ can depend is found. Vectors $\vec r_{ik}$ are presented in the form of an expansion of the base of a Brave lattice. This allows us to present $I_j \left( {\vec r_{ik} } \right)$ in the form of integers (lattice sums) multiplied by τ m , where τ is half of an elementary cell rib, and m = const is determined by the model. The sum of the Lenard-Jones potential and the potentials of tri- and tetra-atomic interactions was chosen as the model potential. Within this model, elastic moduli of the second and third order were calculated for crystals with A2-type structure.  相似文献   

13.
The available data on \(|\Delta B| = |\Delta S| = 1\) decays are in good agreement with the Standard Model when permitting subleading power corrections of about \(15\,\%\) at large hadronic recoil. Constraining new-physics effects in \(\mathcal {C}_{7}^{\mathrm {}}\) , \(\mathcal {C}_{9}^{\mathrm {}}\) , \(\mathcal {C}_{10}^{\mathrm {}}\) , the data still demand the same size of power corrections as in the Standard Model. In the presence of chirality-flipped operators, all but one of the power corrections reduce substantially. The Bayes factors are in favor of the Standard Model. Using new lattice inputs for \(B\rightarrow K^*\) form factors and under our minimal prior assumption for the power corrections, the favor shifts toward models with chirality-flipped operators. We use the data to further constrain the hadronic form factors in \(B\rightarrow K\) and \(B\rightarrow K^*\) transitions.  相似文献   

14.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

15.
Electrically charged dust is considered in the framework of Einstein–Maxwell–dilaton gravity with a Lagrangian containing the interaction term \(P(\chi )F_{\mu \nu }F^{\mu \nu }\) , where \(P(\chi )\) is an arbitrary function of the dilaton scalar field \(\chi \) , which can be normal or phantom. Without assumption of spatial symmetry, we show that static configurations exist for arbitrary functions \(g_{00} = \exp (2\gamma (x^{i}))\) ( \(i=1,2,3\) ) and \(\chi =\chi (\gamma )\) . If \(\chi = \mathrm{const}\) , the classical Majumdar–Papapetrou (MP) system is restored. We discuss solutions that represent black holes (BHs) and quasi-black holes (QBHs), deduce some general results and confirm them by examples. In particular, we analyze configurations with spherical and cylindrical symmetries. It turns out that cylindrical BHs and QBHs cannot exist without negative energy density somewhere in space. However, in general, BHs and QBHs can be phantom-free, that is, can exist with everywhere nonnegative energy densities of matter, scalar and electromagnetic fields.  相似文献   

16.
Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay ( \(\beta \beta 0\nu \) ) a central role in astroparticle physics. In fact, the discovery of this elusive decay would be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for \(\beta \beta 0\nu \) are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO \(_4\) scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the \(\beta \beta 0\nu \) of \(^{100}\) Mo as high as \(\sim \) \(10^{24}\)  years in only 1 year of data taking. The same array made of \(^{40}\) Ca \(^{\mathrm {nat}}\) MoO \(_4\) scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of \(^{48}\) Ca) will instead be capable of achieving the remarkable sensitivity of \(\sim \) \(10^{25}\)  years on the half-life of \(^{100}\) Mo \(\beta \beta 0\nu \) in only 1 year of measurement.  相似文献   

17.
We report connection conductivity ( \(C_{\rm c}\) ) of adhesive which including \(\hbox {In}_2\hbox {O}_3\) \(\hbox {SnO}_2\) (ITO) particles developed for fabrication of stacked-type-multi-junction solar cells. The commercial 20- \(\upmu \) m sized ITO particles were heated in vacuum at temperature ranging from 800 to 1,300  \(^{\circ }{\rm C}\) for 10 min to increase \(C_{\rm c}\) . 6.2 wt% ITO particles were dispersed in commercial Cemedine adhesive gel to form 100 samples structured with n-type Si/adhesive/n-type Si (n-Si sample) and p-type Si/adhesive/p-type Si (p-Si sample). Current density as a function of voltage (J–V) characteristics gave \(C_{\rm c}\) . It ranged from 4.3 to 1.0 S/cm \(^2\) for the n-Si sample with 800 \(^{\circ }{\rm C}\) heat-treated ITO particles. Its standard deviation was 0.59 S/cm \(^2\) . On the other hand, it ranged from 2.0 to 0.6 S/cm \(^2\) for the p-Si sample with 800  \(^{\circ }{\rm C}\) heat-treated ITO particles. Its standard deviation was 0.22 S/cm \(^2\) . The distribution of \(C_{\rm c}\) mainly resulted from contact efficiency of ITO particles to substrate. We theoretically estimated that present \(C_{\rm c}\) achieved a low loss of the power conversion efficiency ( \(E_{\rm ff}\) ) lower than 0.3 % in the application of fabrication of multi-junction solar cell with an intrinsic \(E_{\rm ff}\) of 30 % and an open circuit voltage above 1.9 V.  相似文献   

18.
The large isospin symmetry breaking found in the X(3872) decay is investigated by looking into the transfer strength from the \({{c}\bar{c}}\) quarkonium to the two-meson states: \({c\bar{c} \rightarrow D^{0}\overline{D}^{*0}, D^{+} D^{*-} , J /\psi\omega, {\rm and} \, J /\psi\rho}\) . The widths of the \({\rho}\) and \({\omega}\) mesons are taken into account in the calculation. It is found that very narrow \({J /\psi\omega}\) and \({J /\psi\rho}\) peaks appear at the \({D^{0}\overline{D}^{*0}}\) threshold. These narrow peaks appear provided that the strength of the \({D^{0}\overline{D}^{*0}}\) component is large around the threshold. The large width of the \({\rho}\) meson enhances the isospin-one component in the transfer strength considerably, which reduces the ratio \({{\rm Br}(X \rightarrow J /\psi\omega)/{\rm Br}(X \rightarrow J /\psi\rho)}\) down to 2.5.  相似文献   

19.
Charmonium ( \({c \bar{c}}\) ) bound states in few-nucleon systems, 2H, 4He and 8Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective \({(c \bar{c})}\) –nucleon (N) interaction. The relation between two-body \({(c \bar{c})}\) N scattering length \({a_{c\bar{c}-N}}\) and the binding energies B of \({(c \bar{c})}\) –nucleus bound states are given. Recent lattice QCD data of \({a_{c\bar{c}-N}}\) corresponds to \({B \simeq 0.5}\) MeV for \({(c \bar{c})-^{4}}\) He and 2 MeV for \({(c \bar{c})-^{8}}\) Be in our results.  相似文献   

20.
For the Schrödinger map equation \({u_t = u \times \triangle u \, {\rm in} \, \mathbb{R}^{2+1}}\) , with values in S 2, we prove for any \({\nu > 1}\) the existence of equivariant finite time blow up solutions of the form \({u(x, t) = \phi(\lambda(t) x) + \zeta(x, t)}\) , where \({\phi}\) is a lowest energy steady state, \({\lambda(t) = t^{-1/2-\nu}}\) and \({\zeta(t)}\) is arbitrary small in \({\dot H^1 \cap \dot H^2}\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号