首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

2.
The structural determination of sn-1 and sn-2 hexadecanoic lysophosphatidylcholine (LPC) regioisomers was carried out using fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecules produced diverse product ions due mainly to charge remote fragmentations. Based on the information obtained from the CID spectra of protonated and sodiated molecules, sn-1 and sn-2 hexadecanoic LPC isomers could be discriminated. Especially, the abundance ratio of the diagnostic ion pair [m/z 224/226] in the CID spectra of [M + H](+) ions was shown to be greatly different. Moreover, the CID-MS/MS spectra of sodium-adducted molecules for hexadecanoic LPC isomers showed characteristic product ions such as [M + Na - 103](+), [M + Na - 85](+), and [M + Na - 59](+), by which their regio-specificity can be differentiated.  相似文献   

3.
We applied low-energy collisionally activated dissociation (CAD) tandem quadrupole mass spectrometry to study the fragmentation pathways of the [M + H](+) and [M + Li](+) ions of phosphatidylcholine (PC), generated by electrospray ionization (ESI). It is revealed that the fragmentation pathways leading to loss of the polar head group and of the fatty acid substituents do not involve the hydrogens attached to the glycerol backbone as previously reported. The pathway for formation of the major ion of m/z 184 by loss of the polar head group from the [M + H](+) precursor of a diacyl PC involves the participation of the alpha-hydrogen of the fatty acyl substituents, whereas the H(+) participates in the loss of fatty acid moieties. The alpha-hydrogens of the fatty acid substituents also participate in the major fragmentation processes, including formation of [M + Li-R(x)CO(2)H](+) and [M + Li-59-R(x)CO(2)H](+) ions for the [M + Li](+) ions of diacyl PCs, when subjected to low-energy CAD. These fragmentation processes are deterred by substitution of the fatty acyl moieties with alkyl, alkenyl, or hydroxyl groups and consequentially, result in a distinct product-ion spectrum for various PC, including diacyl-, plasmanyl- plasmenyl-, and lyso-PC isomers. The alpha-hydrogens of the fatty acyl substituents at sn-2 are more labile than those at sn-1. This is reflected by the preferential loss of the R(1)CO(2)H over the R(2)CO(2)H observed for the [M + Li](+) ions of diacyl PCs. The spectrum features resulting from the preferential losses permit identification and assignment of the fatty acid moieties in the glycerol backbone. The new fragmentation pathways established by tandem and source CAD tandem mass spectra of various PC molecules, including deuterium-labeling analogs, were proposed. These pathways would clarify the mechanisms underlying the ion formations that lead to the structural characterization of PC molecules.  相似文献   

4.
A series of lysophosphatidylcholines were isolated from the marine sponge Spirastrella abata by reversed-phase high performance liquid chromatography (HPLC) and analyzed by fast atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecular ions produced diverse product ions via a series of dissociative processes. Because of the positive charge of the amine group at the end of the molecules, charge-remote fragmentation patterns of specific ions, [M + H](+) or [M + Na](+), were very helpful for the identification of product ions which are characteristic for choline and long hydrocarbon chains substituted at the glycerol back bone. Moreover, the CID-MS/MS spectra of sodium adducted molecular ions for lysophosphatidylcholines yielded common characteristic fragment ions for the choline moiety and characteristic ions [M + Na-103](+), [M + Na-85](+) and [M + Na-59](+) in the higher mass region.  相似文献   

5.
A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether lipids. Ether lipid reference compounds were characterized by five to six major ions in the positive ion mode. The 1-O-alkyl-sn-glycerols were analyzed as the diacetoyl derivative, and showed the [M - acetoyl](+) ion as an important diagnostic ion. The diagnostic ions of directly analyzed 1-O-alkyl-2-acyl-sn-glycerols and 1-O-alkyl-3-acyl-sn-glycerols were the [M - alkyl](+), [M + H - H(2)O](+) and [M + H](+) ions. Regiospecific characterization of the fatty acid position was evident from the relative ion intensities, as the sn-2 species had relatively high [M + H](+) ion intensities compared with [M + H - H(2)O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra. The diagnostic ions of directly analyzed 1-O-alkyl-2,3-diacyl-sn-glycerols were the [M - alkyl](+), [M - sn-2-acyl](+) and [M - sn-3-acyl](+) ions. Regiospecific characterization of the fatty acid identity and position was evident from the relative ion intensities, as fragmentation of the sn-2 fatty acids was preferred to the sn-3 fatty acids; however, loss of fatty acids was also promoted by higher degrees of unsaturation. Therefore, both structural and positional effects of the fatty acids affect the spectra of the neutral ether lipids. Fragmentation patterns and optimal capillary exit voltages are suggested for each neutral ether lipid class. The present study demonstrates that reversed-phase HPLC and positive ion ESI/CID/MS provide direct and unambiguous information about the configuration and identity of molecular species in neutral 1-O-alkyl-sn-glycerol classes.  相似文献   

6.
Collision induced dissociation (CID) of sodiated peptide derivatives containing a nitrate ester functionality was used to regiospecifically generate three isomeric radicals of the model peptide Bz-Ala-Gly-OMe corresponding to radicals formed at: C(α) of the alanine residue [4+Na](+); C(α) of the glycine residue [5+Na](+); and the side chain of alanine [6+Na](+). The ion-molecule reactions of these peptide radicals were examined to model oxidative damage to peptides and to probe whether the radical sites maintain their integrity or whether they isomerise via intramolecular hydrogen atom transfer (HAT). Only [6+Na](+) is reactive towards O(2), forming the peroxyl radical [7+Na](+), which loses O(2), HO˙ and HO(2)˙ under CID. The radical ion [7 + Na](+) abstracts a hydrogen atom from 4-fluorothiophenol to form the hydroperoxide [8+Na](+), which upon CID fragments via the combined loss of HO˙ and CH(2)O. In contrast, all three of the isomeric sodiated radicals react with NO˙ and NO(2)˙ to form adducts. CID of the NO adducts only regenerates the radicals via NO˙ loss, thus providing no structural information. In contrast, CID of the NO(2) adducts gives rise to a range of product ions and the spectra are different for each of the three adducts, suggesting that the isomeric radicals [4+Na](+), [5+Na](+) and [6+Na](+) are produced as discrete species. Finally, CID of the NO(2) adducts was used to probe the rearrangement of the radicals [4+Na](+), [5+Na](+) and [6+Na](+) prior to their reaction with NO(2)˙: [6 + Na](+) rearranges to a mixture of [4+Na](+) and [5+Na](+) while [5+Na](+) rearranges to [4+Na](+).  相似文献   

7.
A novel plasmal conjugate of galactosylsphingosine (psychosine), Gro1(3)-O-plasmal-O-6Galbeta-sphingosine (glyceroplasmalopsychosine), was analyzed by electrospray ionization and liquid secondary ion mass spectrometry with low- or high-energy collision-induced dissociation (CID). In the product ion spectra of the [M + H](+) ions, [M + H - glycerol](+) ions arising from the loss of a glycerol were predominant. Unexpectedly, CID of the [M + H - glycerol](+) ion produced an outstanding ion, [(M + H - glycerol) - Hex](+), which required the loss of the galactose from inside the molecule. This ion was greatly reduced in the spectra of N,N-dimethyl derivatives, indicating that the [(M + H - glycerol) - Hex](+) ion is formed from an intramolecular rearrangement with migration of the plasmal residue to the free amino group of sphingosine. It would be expected that the rearrangement occurs simultaneously with the elimination of glycerol or a rearranged [M + H](+) ion leads to the elimination of glycerol, to form a Schiff base-type [M + H - glycerol](+) ion, from which the terminal galactose could be removed by the normal mechanism of glycosidic cleavage. On the other hand, the [M + Na - glycerol](+) ion derived from the sodiated molecule did not produce an ion corresponding to the rearrangement reaction, possibly owing to a higher stability of the sodiated ions against conformational changes.  相似文献   

8.
The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.  相似文献   

9.
Ionization and prompt fragmentation patterns of triacylglycerols, phospholipids (PLs) and galactolipids were investigated using matrix-assisted laser desorption/ionization (MALDI). Positive ions of non-nitrogen-containing lipids appeared only in the sodiated form, while nitrogen-containing lipids were detected as both sodiated and protonated adducts. Lipids containing acidic hydroxyls were detected as multiple sodium adducts or deprotonated ions in the positive and negative modes, respectively, with the exception of phosphatidylcholines. The positive MALDI spectra of triacylglycerols contained prompt fragments equivalent to the loss of RCOO(-) from the neutral molecules. Prompt fragment ions [PL-polar head](+) were observed in the positive MALDI spectra of all phospholipids except phosphatidylcholines. The phosphatidylcholines produced only a minor positive fragment corresponding to the head group itself (m/z 184). Galactolipids did not undergo prompt fragmentation. Post-source decay (PSD) was used to examine the source of prompt fragments. PSD fragment patterns indicated that the lipid prompt fragment ions did not originate from the observed molecular ions (sodiated or protonated), and suggested that the prompt fragmentation followed the formation of highly unstable, probably protonated, precursor ions. Pathways leading to the formation of prompt fragment ions are proposed.  相似文献   

10.
Electrospray ionization for analysis of platelet-activating factor.   总被引:1,自引:0,他引:1  
Platelet-activating factor (PAF) was analyzed by electrospray-ionization mass spectrometry (ESI-MS) using a single quadrupole mass spectrometer. The positive-ion spectrum was dominated by an ion corresponding to a sodiated molecule when a low potential difference between the capillary exit (nozzle) and the skimmer was employed, but when the capillary exit voltage was increased, fragmentation of PAF was observed. Initial fragmentation involved the loss of the elements of trimethylamine from the sodiated molecule to yield [M+Na-59]+. An intense ion at m/z 147, generated by the loss of trimethylamine from the sodiated phosphocholine portion of the molecule was also detected, along with a lower intensity ion at m/z 184 which is representative of a protonated phosphocholine moiety. With negative-ion detection the major molecular species was [M+Cl]-. Interpretation of the mass spectral fragments was verified by ESI tandem mass spectrometry on a triple-quadrupole tandem mass spectrometer.  相似文献   

11.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

12.
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.  相似文献   

13.
A non-aqueous reversed-phase liquid chromatographic method coupled to electrospray ionisation (ESI) tandem mass spectrometry was developed for the analysis of triacylglycerols (TGs). The synthetic TGs studied were separated according to their equivalent carbon number with a gradient of methanol (containing 0.01% (v/v) formate adjusted to pH 5.3 with ammonia) and chloroform. ESI mass spectra of TGs yielded positive ion current signals for [M + NH(4)](+) and [M + NH(4)-RCOONH(4)](+). The mass spectra also showed signals believed to arise from [M + K](+). Collision-induced dissociation (CID) of the [M + NH(4)](+) precursor ion yielded [M + NH(4) - RCOONH(4)](+), [RCO + 74](+) and [RCO](+) product ions as aids for the structural elucidation of the TGs. In addition, [RCO - 18](+) and small amounts of [RCO - 2](+) product ions were also found. The latter ions were observed only for TGs containing unsaturated fatty acids. CID of ammoniated 1-stearoyl-2-oleoyl-3-linoleoyl-glycerol (18:0/18:1/18:2) indicated that neutral loss of the sn-2 fatty acid was energetically less favourable than loss of the fatty acid from the sn-1 or sn-3 position.  相似文献   

14.
The potential of atmospheric pressure photoionization was investigated for the structural analysis of phosphatidylcholine lipids (PCs). [M+H]+ ions of high abundance were obtained, along with several fragment ions. Three of these dissociation products corresponded to quite unusual fragmentation pathways but allowed the determination of both the nature and the position on the glycerol backbone (sn-1 or sn-2) of the fatty acyl chains. The loss of a methyl group from the choline head was also observed. These results suggest a complex ionization mechanism in APPI. However, this method proved to be very powerful for the rapid structural analysis of PC species without using MS/MS experiments.  相似文献   

15.
The application of multiple-stage ion-trap (IT) mass spectrometric methods for the structural characterization of cardiolipin (CL), a 1,3-bisphosphatidyl-sn-glycerol that consists of four fatty acyl chains and three glycerol backbones (designated as A, B, and central glycerol, respectively), as the sodiated adduct ions in the positive-ion mode was evaluated. Following collisionally activated dissociation (CAD), the [M - 2H + 3Na]+ ions of CL yield two prominent fragment ion pairs that consist of the phosphatidyl moieties attached to the 1'- and 3'-position of the central glycerol, respectively, resulting from the differential losses of the diacylglycerol moieties containing A and B glycerol, respectively. The results are consistent with those previously described for the [M - H]- and [M - 2H + Na]- ions in the negative-ion mode, thus permitting assignment of the two phosphatidyl moieties attached to the 1'- or 3'-position of the central glycerol. The identities of the fatty acyl substituents and their positions on the glycerol backbones (glycerol A and B) are deduced from further degradation of the above ion pairs that give the fragment ions reflecting the fatty acid substituents at the sn-1 (or sn-1') and sn-2 (or sn-2') positions. The ions that arise from losses of the fatty acid substituents at sn-1 and sn-1', respectively, are prominent, but the analogous ions from losses of the fatty acid substituents at sn-2 and sn-2', respectively, are of low abundance in the MS2 product-ion spectra. This feature further confirms the assignment of the positions of the fatty acid substituents. The similar IT multiple-stage mass spectrometric approaches including MS2 and MS3 for structural characterization of CL using its [M + Na]+ and the [M - H + 2Na]+ ions are also readily applicable. However, their uses for structural characterization are less desirable because formation of the [M + Na]+ and the [M - H + 2Na]+ ions for CL is not predictable.  相似文献   

16.
Structural characterization of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI-4P), and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) by collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization is described. In negative ion mode, the major fragmentation pathways under low energy CAD for PI arise from neutral loss of free fatty acid substituents ([M - H - RxCO2H]-) and neutral loss of the corresponding ketenes ([M - H - R'xCH=C=O]-), followed by consecutive loss of the inositol head group. The intensities of the ions arising from neutral loss of the sn-2 substituent as a free fatty acid ([M - H - R2CO2H]-) or as a ketene ([M - H - R'2CH=C=O] ) are greater than those of ions reflecting corresponding losses of the sn-1 substutient. This is consistent with our recent finding that ions reflecting those losses arise from charge-driven processes that occur preferentially at the sn-2 position. These features permit assignment of the position of the fatty acid substituents on the glycerol backbone. Nucleophilic attack of the anionic phosphate onto the C-1 or the C-2 of the glycerol to which the fatty acids attached expels sn-1 (R1CO2-) or sn-2 (R2CO2-) carboxylate anion, respectively. This pathway is sterically more favorable at sn-2 than at sn-1. However, further dissociations of [M - H - RxCO2H - inositol] , [M - H - RxCO2H]-, and [M - H - RxCH=C=O]- precursor ions also yield RxCO2- ions, whose abundance are affected by the collision energy applied. Therefore, relative intensities of the RxCO2- ions in the spectrum do not reflect their positions on the glycerol backbone and determination of their regiospecificities based on their ion intensities is not reliable. The spectra also contain specific ions at m/z 315, 279, 259, 241, and 223, reflecting the inositol head group. The last three ions are also observed in the tandem spectra of the [M - H]- ions of phosphatidylinositol monophosphate (PI-P) and phosphatidylinositol bisphosphate (PI-P2), in addition to the ions at m/z 321 and 303, reflecting the doubly phosphorylated inositol ions. The PI-P2 also contains unique ions at m/z 401 and 383 that reflect the triply phosphorylated inositol ions. The [M - H]- ions of PI-P and PI-P2 undergo fragmentation pathways similar to that of PI upon CAD. However, the doubly charged ([M - 2H]2-) molecular ions undergo fragmentation pathways that are typical of the [M - H]- ions of glycerophosphoethanolamine, which are basic. These results suggest that the further deprotonated gaseous [M - 2H]2 ions of PI-P and PI-P2 are basic precursors.  相似文献   

17.
The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples.  相似文献   

18.
The use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) for the quantitative determination of phospholipid (PL) molecular species has been problematic, due primarily to the formation of multiple signals (corresponding to the molecular ion and other adducts) for some classes of PL. For example, analysis of phosphatidylcholine (PC) yielded signals that corresponded to protonated and sodiated molecules in the MALDI spectrum. The resulting spectral overlap among various molecular species (e.g. [PC(16:0/18:2) + Na] and [PC(18:2/18:3)]) made it impossible to ascertain their relative amounts using this technique. Other spectral ambiguities existed among different structural isomers, such as PC(18:1/18:1) and PC(18:0/18:2). We determined that molecular species could be resolved by MALDI-TOFMS by first removing the polar head (e.g. phosphocholine) from the phospholipid to effect production of only the sodiated molecules of the corresponding diacylglycerols (DAGs). Analysis of the resulting spectrum allowed unequivocal determination of the molecular species profile of PC from potato tuber and soybean. Estimation of fatty acid composition based on the molecular species determined by MALDI-TOFMS analysis agreed with that from GC-FID analysis. Post-source decay (PSD) was used to resolve standard isomers of PC (e.g. 18:1/18:1 vs. 18:0/18:2). Our results indicated that PSD is a useful approach for resolving structural isomers of PL molecular species.  相似文献   

19.
The fragmentation pathways of two selected ionophore antibiotics, salinomycin and monensin A, were studied using electrospray (ES) orthogonal acceleration quadrupole time-of-flight mass spectrometry in positive-ion mode. The identity of fragment ions was determined by accurate-mass measurements. In ES mass spectra, ion signals of relatively high intensity were observed for [M+Na](+) and [M-H+2Na](+) for each antibiotic. Each of the ion species [M+Na](+) and [M-H+2Na](+) for salinomycin and [M-H+2Na](+) for monensin A were isolated in turn and subjected to fragmentation. In the fragmentation of [M+Na](+) and [M-H+2Na](+) from salinomycin, only Cbond;C single bond cleavage and dehydration were observed. Product ion mass spectra obtained from [M-H+2Na](+) of monensin A showed that ether ring opening, Cbond;C single bond cleavage and dehydration fragmentations had occurred. Fragment ions containing two sodium atoms were observed in the product ion mass spectrum of [M-H+2Na](+) from salinomycin, but not from monensin A. Both type A (containing the terminal carboxyl group) and type F (containing the terminal hydroxyl group) fragment ions were observed in the product ion mass spectra of sodium adduct ions of salinomycin and monensin A.  相似文献   

20.
The structures of two oligomers of acidic xylo-oligosaccharides (XOS) of the same molecular weight (634 Da), Xyl(2)MeGlcAHex and Xyl(2)GlcA(2) were differentiated by electrospray tandem mass spectrometry (ESI-MS/MS). These oligomers were present in a mixture of XOS obtained by acid hydrolysis of heteroxylans extracted from Eucalyptus globulus wood (Xyl(2)MeGlcAHex) and Olea europaea olive fruit (Xyl(2)GlcA(2)). In the ESI-MS spectra of the XOS, ions at m/z 657 and 652 were observed and assigned to [M + Na](+) and [M + NH(4)](+), respectively. The ESI-MS/MS spectrum of [M + Na](+) ion of Xyl(2)MeGlcAHex showed the loss of Hex residue from the reducing end followed by the loss of MeGlcA moiety. Simultaneously, the loss of a Xyl residue from either the reducing or the non-reducing ends was detected. On the other hand, the fragmentation of Xyl(2)GlcA(2) occurs mainly by the loss of one and two GlcA residues or by the loss of the GlcAXyl moiety, due to the glycosidic bond cleavage between the two Xyl residues. Loss of one and two CO(2) molecules was only observed for this oligomer, where the GlcA are in vicinal Xyl residues. The ESI-MS/MS spectra of [M + NH(4)](+) of both oligomers showed the loss of NH(3), resulting in the protonated molecule, where the presence of ions assigned as protonated molecules of aldobiuronic acid residues, [MeGlcA - Xyl + H](+) and [GlcA - Xyl + H](+), are diagnostic ions of the presence of MeGlcA and GlcA moieties in XOS. Since these structures occur in small amounts in complex acidic XOS mixtures and are very difficult, if possible, to isolate, tandem mass spectrometry revealed to be a powerful tool for the characterization of these types of substitution patterns present in heteroxylans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号