首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Six alkyl alcohols were studied using thermospray mass Spectrometry. Whereas the dominant ion in the spectrum up to a repeller potential of 120 V was [M + NH4]+, above that potential [M + H]+ and fragment ions appeared. The fragments observed were largely due to hydrogen release from alkyl ions ([CnH2n+1]+ – H2 → [CnH2n-1]+) and loss of water or some other stable molecule from the same species. The results are compared with those from ionization of the same alcohols under electron impact and photoionization conditions and with results obtained for methanol under thermospray conditions.  相似文献   

2.
Mesoporous polyaromatic frameworks (PAFs) based on tetraphenylmethane were obtained and modified with sulfonic acid groups. The compounds were characterized by solid-state 13C NMR and IR spectroscopy, low-temperature nitrogen adsorption-desorption, and transmission electron microscopy. The acidities of the PAF-1-SO3H and PAF-2-SO3H samples determined by titration were 3.99 mmol g–1 and 0.91 mmol g–1, respectively. The catalytic activity of PAF-SO3H for alkylation of phenol with linear terminal olefins was investigated. The reaction products were isomeric monoalkylphenols (C-alkylates), and alkyl phenyl ethers (O-alkylates).  相似文献   

3.
《Tetrahedron: Asymmetry》2014,25(13-14):1008-1014
The scope and limitations of microwave-assisted glycosylation for the preparation of various alkyl l-rhamnoside amphiphiles were investigated. Straightforward coupling of hydrophilic unprotected sugar and hydrophobic high molecular weight alcohols, in the presence of p-toluenesulfonic acid as a promoter, yielded structurally different compounds in very good yields (37–87%). A homologous series including 17 examples of alkyl α-l-rhamnoside amphiphiles varying in chain structure (C4–C20) is reported. The structures of the new derivatives were determined by NMR spectroscopy and quantum chemical calculations. Molecular geometry optimizations of different ring forms (1C4 and 4C1) and anomeric configurations were carried out using DFT calculations. Herein we demonstrate the advantages of microwave irradiation for the preparation of a broad variety of linear and branched-chain alkyl α-l-rhamnosides. The application of this approach to the synthesis of new natural non-ionic surfactants makes this method attractive because of their potential use in biomedical and pharmaceutical chemistry.  相似文献   

4.
Middle-phase microemulsions of green surfactant alkyl polyglucosides   总被引:1,自引:0,他引:1  
Microemulsions are important organized molecular assembles in surfactant solutions and are used in various fields such as tertiary oil recovery, pharmaceutics, cosmetics, nanoparticle synthe-sis and chemical engineering. The more commonly used nonionic surfactants to produce micro- emulsions are the ethylene oxide-based compounds (CiEj). In recent years alkyl polyglucosides have been received considerable attention in producing microemulsions[17]. Alkyl polyglucosides (APG), which are widely…  相似文献   

5.
A series of 1‐alkyl‐3‐methylimidazolium fluorohydrogenate salts (CxMIm(FH)2F, x=8, 10, 12, 14, 16, and 18) have been characterized by thermal analysis, polarized optical microscopy, IR spectroscopy, X‐ray diffraction, and anisotropic ionic conductivity measurements. Liquid crystalline mesophases with a smectic A interdigitated bilayer structure are observed from C10 to C18, showing a fan‐like or focal conic texture. The temperature range of the mesophase increases with the increase in the alkyl chain length (from 10.1 °C for C10MIm(FH)2F to 123.1 °C for C18MIm(FH)2F). The distance between the two layers in the smectic structure gradually increases with increasing alkyl chain length and decreases with increasing temperature. Conductivity parallel to the smectic layers is around 10 mS cm?1 regardless of the alkyl chain length, whereas that perpendicular to the smectic layers decreases with increasing alkyl chain length because of the thicker insulating sheet with the longer alkyl chain.  相似文献   

6.
The results of research on catalytic alkylation of phenol with ethyl, n- and iso-propyl alcohols conducted in gas phase in presence of iron catalyst are presented. We found that C2 and C3 alcohols exhibit high selectivity of ortho-alkylation, for ethanol — 99%, for n-propanol and for iso-propanol — up to 92% in the investigated conditions of reaction.  相似文献   

7.
The field desorption mass spectral behavior of several hydroxyammoniocarboxylates was studied at both low and high emitter heating currents. The molecular weights of these thermally unstable compounds can be determined directly from the low emitter current (<10 mA) field desorption mass spectra, which are dominated by [xM+H]+ and [xM+H? CO2]+ ions (1?x?4). At higher emitter currents (~20 mA), pyrolytic processes become important. These include intermolecular transfer of a single alkyl group yielding [M+alkyl]+ ions, intermolecular isomerization producing a hydroxyaminoester as the rearranged form of the molecule, and elimination of alcohol from the rearranged molecule, producing γ or δ lactones. The distribution of pyrolysis products does not depend significantly on the length of the carboxylate chain, but does appear to depend upon the chain length of the alkyl substituent on nitrogen. The spectra of molecules containing a long alkyl substituent (e.g. C14H29, C22H45) exhibit relatively high levels of [M+alkyl]+ ions, unlike the spectra of compounds which contain only methyl or ethyl substituents on the quaternary nitrogen. These latter compounds exhibit a relatively greater tendency toward lactone formation.  相似文献   

8.
Alkoxy Fischer carbene complexes have been synthesized by alkylation of lithium acylmetalates with alkyl halides in the presence of catalytic amount (5-10 mol %) of n-tetrabutylammonium bromide (n-Bu4NBr) restricting the temperature below 55 °C to minimize decomposition of the product. The reaction occurs in a biphasic condition involving water and alkyl halide. The effect of cesium on this alkylation reaction has been studied. The presence of a radical quencher, di-tert-butyl phenol, neither affects the yield nor leads to the formation of dimer of di-tert-butyl phenol, which rules out the possibility of radical pathway mechanism. The kinetic study and the 1H NMR spectra of products suggest an SN2 pathway particularly involving alkyl halides.  相似文献   

9.
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4, but selective and efficient synthesis of higher alcohols (C2+OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+OH from CO2 hydrogenation over K-modified Ni−Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni−Zn carbide (K-Ni3Zn1C0.7) by carburization of Zn-incorporated Ni0, which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C−C coupling to C2+OH rather than conventional CH4. This work opens a new catalytic avenue toward CO2 hydrogenation to C2+OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.  相似文献   

10.
Cationic amphiphilic modified pullulan’s were obtained in two steps: firstly the synthesis of diethylaminoethylpullulan (DEAE-Pullulan) with DS0 = 0.80 in water (all degrees of substitution (DS) are calculated in anhydroglucose units (AGU)) followed by the incorporation of different alkyl chains (C10, C12 and C16) using Hoffmann alkylation reaction. Three alkylated derivatives (Y-Cx-DEAE-Pullulan) were produced with a degree of substitution of alkyl chains (Y = 100 DSCx) of 40 in the case of C10 and C12 and 20 in the case of C16. The three samples contained two functional types: an amine function (DSN), dependent on pH and a quaternary ammonium function (DSN+) linked to a hydrophobic alkyl chain (DSCx). Chemical characterizations were carried out by conductimetric measurements, elemental analysis and 1H NMR. The amphiphilic and associative properties have been confirmed by flow field flow fractionation (F4) coupled on-line with multi-angle laser light scattering (MALLS). The intermolecular associations were observed for DEAE-Pullulan and Y-Cx-DEAE-Pullulan in 0.1 M LiNO3.  相似文献   

11.
We calculate the heats of vaporisation for imidazolium‐based ionic liquids [Cnmim][NTf2] with n=1, 2, 4, 6, 8 by means of molecular dynamics (MD) simulations and discuss their behavior with respect to temperature and the alkyl chain length. We use a force field developed recently. The different cohesive energies contributing to the overall heats of vaporisations are discussed in detail. With increasing alkyl chain length, the Coulomb contribution to the heat of vaporisation remains constant at around 80 kJ mol?1, whereas the van der Waals interaction increases continuously. The calculated increase of about 4.7 kJ mol?1 per CH2‐group of the van der Waals contribution in the ionic liquid exactly coincides with the increase in the heats of vaporisation for n‐alcohols and n‐alkanes, respectively. The results support the importance of van der Waals interactions even in systems completely composed of ions.  相似文献   

12.
The cationic azo-surfactants possessing different spacers and tail alkyl chain lengths have been synthesized by azocoupling ofp-alkylaniline orop-ethoxyaniline with phenol, followed by alkylation and quaternalization with dibromoalkane and trimethylamine, respectively. These surfactants showed a good solubility in water. A reversibletrans-cis isomerization of the azosurfactants by photoirradiation was assessed by UV-Vis absorption spectra. Due to a difference in HLB between thetrans- andcis-surfactants, the observed critical micelle concentration (CMC) values and the electric conductivity of the surfactant solution at above the CMC were significantly affected by the photoinducedtrans-cis isomerization. The azo-surfactants bearing moderate alkyl chain lengths such as surfactants 6 (R2=C2H4, R3=C4H9) and 9 (R2=C4H8, R3=C2H5) were found to be effective to achieve large CMC changes (3.6 mmol/L for 6 and 5.9 mmol/L for 9) by UV-light irradiation. The replacement of the tail chain species also affected the photoresponsive function. The surfactant 12, possessingp-ethoxy group as the tail chain, was found to form a stable micelle aggregation as compared with the structurally related surfactant 10 having ethyl unit as its tail group, but it exhibited a large CMC change (5.3 mmol/L) by UV-light irradiation.  相似文献   

13.
Visible‐ and red‐light responsive vesicles were prepared by incorporating a ruthenium aqua complex having two alkyl chains on tridentate and asymmetrical bidentate ligands (proximal‐ 2 : [Ru(C10tpy)(C10pyqu)OH2]2+, C10tpy=4′‐decyloxy‐2,2′;6′,2“‐terpyridine, C10pyqu=2‐[2′‐(6′‐decyloxy)‐pyridyl]quinoline). The ruthenium complex of proximal‐ 2 with closed alkyl chain geometry and a cylinder‐like molecular shape exhibited photoisomerization to distal‐ 2 with an open alkyl chain geometry and a cone‐like shape, both in an aqueous solution and in vesicle dispersions. We observed that light irradiation of giant vesicles containing proximal‐ 2 induced diverse morphological changes.  相似文献   

14.
A series of symmetrically n ‐alkyl‐substituted mono benzimidazolium salts with steady increase in n ‐alkyl chain length have been prepared by stepwise N ‐alkylation resulting in salts ( 1 – 8 ). The mono N‐heterocyclic carbene (NHC)–Ag(I) complexes ( 9 – 16 ) derived from the respective salts were readily accessible by in situ deprotonation using Ag2O. All the salts and the complexes were characterized using Fourier transform infrared, 1H NMR, 13C NMR and elemental analyses. Furthermore, the structures of salts 3 and 7 and complex 16 were elucidated using X‐ray crystallography, which established that this mono NHC–Ag(I) complex has a linear bis‐carbene arrangement (C2–Ag). The proligands and the respective Ag(I) complexes were studied for their in vitro anticancer potential against human colon cancer cell line (HCT‐116) using 5‐fluorouracil as a standard. From the IC50 values of all the tested compounds, it can be postulated that there is an influential relationship between the increase in chain length of the wingtip n ‐alkyl groups and the anticancer potential. The proligands 4 – 8 and their respective complexes 12 – 16 with long n ‐alkyl chain lengths (n  = 6–10) showed better IC50 values (0.3–3.9 μM) than the standard drug with the complexes displaying markedly better antiproliferation activity against HCT‐116 cell line than the respective proligands and the standard drug (IC50 = 10.2 μM).  相似文献   

15.
Cu catalysts are most apt for reducing CO(2) to multi-carbon products in aqueous electrolytes. To enhance the product yield, we can increase the overpotential and the catalyst mass loading. However, these approaches can cause inadequate mass transport of CO(2) to the catalytic sites, which will then lead to H2 evolution dominating the product selectivity. Herein, we use a MgAl LDH nanosheet ‘house-of-cards’ scaffold to disperse CuO-derived Cu (OD-Cu). With this support-catalyst design, at −0.7 VRHE, CO could be reduced to C2+ products with a current density (jC2+) of −1251 mA cm−2. This is 14× that of the jC2+ shown by unsupported OD-Cu. The current densities of C2+ alcohols and C2H4 were also high at −369 and −816 mA cm−2 respectively. We propose that the porosity of the LDH nanosheet scaffold enhances CO diffusion through the Cu sites. The CO reduction rate can thus be increased, while minimizing H2 evolution, even when high catalyst loadings and large overpotentials are used.  相似文献   

16.
Several ionic liquids (ILs) based on complex manganate(II) anions with chloro, bromo, and bis(trifluoromethanesulfonyl)amido (Tf2N) ligands have been synthesized. As counterions, n‐alkyl‐methylimidazolium (Cnmim) cations of different chain length (alkyl=ethyl (C2), propyl (C3), butyl (C4), hexyl (C6)) were chosen. Except for the 1‐hexyl‐3‐methylimidazolium ILs, all of the prepared compounds could be obtained in a crystalline state at room temperature. However, each of the compounds displayed a strong tendency to form a supercooled liquid. Generally, solidification via a glass transition took place below ?40 °C. Consequently, all of these compounds can be regarded as ionic liquids. Depending on the local coordination environment of Mn2+, green (tetrahedrally coordinated Mn2+) or red (octahedrally coordinated Mn2+) luminescence emission from the 4T(G) level is observed. 1 The local coordination of the luminescent Mn2+ centre has been unequivocally established by UV/Vis as well as Raman and IR vibrational spectroscopies. Emission decay times measured at room temperature in the solid state (crystalline or powder) were generally a few ms, although, depending on the ligand, values of up to 25 ms were obtained. For the bromo compounds, the luminescence decay times proved to be almost independent of the physical state and the temperature. However, for the chloro‐ and bis(trifluoromethanesulfonyl)amido ILs, the emission decay times were found to be dependent on the temperature even in the solid state, indicating that the measured values are strongly influenced by nuclear motion and the vibration of the atoms. In the liquid state, the luminescence of tetrahedrally coordinated Mn2+ could only be observed when the tetrachloromanganate ILs were diluted with the respective halide ILs. However, for [C3mim][Mn(Tf2N)3], in which Mn2+ is in an octahedral coordination environment, a weak red emission from the pure compound was found even in the liquid state at elevated temperatures.  相似文献   

17.
Magnesium-aluminium hydrotalcites (MgAl-HTs) with Mg/Al atomic ratio 2,3 and 4 were synthesized bythe coprecipitation method. Vapour phase alkylation of m-cresol with methanol was carried out over these samples calcined at 723K in the temperature range 523–723K at atmospheric pressure. A mixture of O- and C- alkylated products, namely, 3-methyl anisole (3MA), 2,5- and 2,3-dimethylphenols (DMP) and 2,3,6-trimethylphenol (2,3,6-TMP) were obtained. The selectivity of these products depends on the m-cresol/methanol feed ratio, temperature and contact times. The catalytic activity of these catalysts are in the order MgAl 3.0-CHT>MgAl 2.0-CHT>MgAl 4.0-CHT. MgAl 3.0-CHT showed ∼30% selectivity for 2,5-DMP and 40% selectivity for 2,3,6-TMP with ∼40% conversion at 623K or ∼70% conversion at 723K. The alkylation of m-cresol with 2-propanol over MgAl 3.0-CHT at 673K offered nearly 80% selectivity towards thymol with nearly 40% m-cresol conversion.  相似文献   

18.
The electrophilic organofluorophosphonium catalyst [(C6F5)3PF][B(C6F5)4] is shown to effect benzylation or alkylation by aryl and alkyl CF3 groups with subsequent hydrodefluorination, thus resulting in a net transformation of CF3 into CH2–aryl fragments. In the case of alkyl CF3 groups, Friedel–Crafts alkylation by the difluorocarbocation proceeded without cation rearrangement, in contrast to the corresponding reactions of alkyl monofluorides.  相似文献   

19.
Solvothermal reactions of HgI2, 4,4′‐vinylenedipyridine, and HI in alcoholic solution (methanol, ethanol, or pentanol) gave rise to a family of organic‐inorganic hybrid complexes, formulated as [C14H16N2][I4]2– ( 1 ), [C16H20N2][HgI4] ( 2 ), and [C22H32N2][HgI4]4 ( 3 ). Single‐crystal X‐ray diffraction reveals that all three compounds are discrete structures, including the inorganic anion [I4]2– or [HgI4]2– and an organic cation, where the resulting organic cations were generated in situ alkylation reactions of 4,4′‐vinylenedipyridine with alcohols, with cleavage of the alcoholic C–O bond followed by a one‐step in situ N‐alkylation reaction of 4,4′‐vinylenedipyridine in acidic HI solution. X‐ray powder diffraction (XRD), 1H NMR and 13C NMR, energy‐dispersive X‐ray (EDS), IR, as well as UV/Vis/NIR spectroscopy, elemental analysis, and thermogravimetric analysis (TGA) were used to characterize the complexes.  相似文献   

20.
Covalent functionalisation with alkyl tails is a common method for supporting molecular catalysts and photosensitisers onto lipid bilayers, but the influence of the alkyl chain length on the photocatalytic performances of the resulting liposomes is not well understood. In this work, we first prepared a series of rhenium-based CO2-reduction catalysts [Re(4,4’-(CnH2n+1)2-bpy)(CO)3Cl] ( ReCn ; 4,4’-(CnH2n+1)2-bpy=4,4’-dialkyl-2,2’-bipyridine) and ruthenium-based photosensitisers [Ru(bpy)2(4,4’-(CnH2n+1)2-bpy)](PF6)2 ( RuCn ) with different alkyl chain lengths (n=0, 9, 12, 15, 17, and 19). We then prepared a series of PEGylated DPPC liposomes containing RuCn and ReCn , hereafter noted Cn , to perform photocatalytic CO2 reduction in the presence of sodium ascorbate. The photocatalytic performance of the Cn liposomes was found to depend on the alkyl tail length, as the turnover number for CO (TON) was inversely correlated to the alkyl chain length, with a more than fivefold higher CO production (TON=14.5) for the C9 liposomes, compared to C19 (TON=2.8). Based on immobilisation efficiency quantification, diffusion kinetics, and time-resolved spectroscopy, we identified the main reason for this trend: two types of membrane-bound RuCn species can be found in the membrane, either deeply buried in the bilayer and diffusing slowly, or less buried with much faster diffusion kinetics. Our data suggest that the higher photocatalytic performance of the C9 system is due to the higher fraction of the more mobile and less buried molecular species, which leads to enhanced electron transfer kinetics between RuC9 and ReC9 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号