首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
The nonlinear dynamical behavior of a micromechanical resonator acting as one of the mirrors in an optical resonance cavity is investigated. The mechanical motion is coupled to the optical power circulating inside the cavity both directly through the radiation pressure and indirectly through heating that gives rise to a frequency shift in the mechanical resonance and to thermal deformation. The energy stored in the optical cavity is assumed to follow the mirror displacement without any lag. In contrast, a finite thermal relaxation rate introduces retardation effects into the mechanical equation of motion through temperature dependent terms. Using a combined harmonic balance and averaging technique, slow envelope evolution equations are derived. In the limit of small mechanical vibrations, the micromechanical system can be described as a nonlinear Duffing-like oscillator. Coupling to the optical cavity is shown to introduce corrections to the linear dissipation, the nonlinear dissipation and the nonlinear elastic constants of the micromechanical mirror. The magnitude and the sign of these corrections depend on the exact position of the mirror and on the optical power incident on the cavity. In particular, the effective linear dissipation can become negative, causing self-excited mechanical oscillations to occur as a result of either a subcritical or supercritical Hopf bifurcation. The full slow envelope evolution equations are used to derive the amplitudes and the corresponding oscillation frequencies of different limit cycles, and the bifurcation behavior is analyzed in detail. Finally, the theoretical results are compared to numerical simulations using realistic values of various physical parameters, showing a very good correspondence.  相似文献   

2.
Micro/nanomechanical resonators often exhibit nonlinear behaviors due to their small size and their ease to realize relatively large amplitude oscillation. In this work, we design a nonlinear micromechanical cantilever system with intentionally integrated geometric nonlinearity realized through a nanotube coupling. Multiple scales analysis was applied to study the nonlinear dynamics which was compared favorably with experimental results. The geometrically positioned nanotube introduced nonlinearity efficiently into the otherwise linear micromechanical cantilever oscillator, evident from the acquired responses showing the representative hysteresis loop of a nonlinear dynamic system. It was further shown that a small change in the geometry parameters of the system produced a complete transition of the nonlinear behavior from hardening to softening resonance.  相似文献   

3.
A novel pseudoelastic behavior was recently discovered in [0 1 1¯ 0]-oriented ZnO nanowires under uniaxial tensile loading and unloading. This behavior results from a reversible transformation from the parent wurtzite (WZ) structure to a previously unknown graphitic structure (HX) and is associated with recoverable strains up to 16%. In this paper, a micromechanical continuum model is developed to characterize this behavior. Using the first law of thermodynamics, the model decomposes the transformation into an elastic process of structural transitions between WZ and HX through a sequence of thermodynamically reversible phase equilibrium states and a thermodynamically irreversible process of interface propagation. The elastic equilibrium transition process is modeled with strain energy functions of the two constituent phases which are obtained from independent molecular dynamics calculations. The dissipative interface propagation process is modeled phenomenologically with a function which relates dissipation to the interfacial area between the two phases. The model captures major characteristics of the behavior of wires with lateral dimensions between 20 and 40 Å over the temperature range of 100-500 K.  相似文献   

4.
Appropriate formulations are developed to allow for the atomistic-based continuum modeling of nano-reinforced structural adhesives on the basis of a nanoscale representative volume element that accounts for the nonlinear behavior of its constituents; namely, the reinforcing carbon nanotube, the surrounding adhesive and their interface. The newly developed representative volume element is then used with analytical and computational micromechanical modeling techniques to investigate the homogeneous dispersion of the reinforcing element into the adhesive upon both the linear and nonlinear properties. Unlike our earlier work where the focus was on developing linear micromechanical models for the effective elastic properties of nanocomposites, the present approach extends these models by describing the development of a nonlinear hybrid Monte Carlo Finite Element model that allows for the prediction of the full constitutive response of the bulk composite under large deformations. The results indicate a substantial improvement in both the Young’s modulus and tensile strength of the nano-reinforced adhesives for the range of CNT concentrations considered.  相似文献   

5.
The present study deals with energy transfer in a dissipative mechanical system. Numerical results are given by considering two different potentials and periodical excitation. Specifically, we show energy transfer from linear oscillator to another one, depending on initial conditions. Also, energy transfer from linear to nonlinear (energy pumping), as well as from nonlinear to linear, oscillator is analyzed, under linear and nonlinear interactions.  相似文献   

6.
具有稳定数值解的三维谐振子   总被引:1,自引:1,他引:0  
谐振子广泛应用于物理系统的描述和物理现象的数值模拟。由于二维或三维谐振子对于系统参数、初始条件和边界条件的高度敏感性,很多物理过程的动力学模拟都会出现数值解不稳定的现象。近年来发展的无网格法、物质点法和近场动力学法等数值模拟方法均绕开了对固体材料固有构形的量化描述。本文引入了定常耗散项和弹簧耗散项,考虑随机微扰效应,提出了一种三维耗散谐振子,构建了基于蛙跳法和边界松弛技术的数值积分算法。应用三维谐振子构建了耗散型弹簧摆、简化弦和简化梁三个模型,设定了13个定解问题进行动力学模拟。数值试验结果表明,三维谐振子是稳定的。基于简化弦模型,模拟了拉弦、放弦和重弦三个有界弦振动问题;其中,拉弦和放弦问题成功模拟了有界弦的三维振形;重弦问题模拟再现了悬链线在水平向的微幅振荡现象。基于简化梁模型,模拟了三维梁的拉伸、剪切和扭转行为,验证了三维谐振子对于非线性大变形问题动力学模拟的描述能力,及其对外部作用的高速响应能力。本文方法可以为弦振动问题和材料力学非线性大变形问题的动力学模拟提供一条可行的实现途径。  相似文献   

7.
Hilton  Harry H.  Yi  Sung 《Nonlinear dynamics》2004,36(2-4):281-298
The theory of deterministic generalized viscoelastic linear and nonlinear 1-D oscillators is formulated and evaluated. Examples of viscoelastic Duffing, Mathieu, Rayleigh, Roberts and van der Pol oscillators and pendulum responses are investigated. Material behavior as well as additional effects of structural damping on oscillator performance are also considered. Computational protocols are developed and their results are discussed to determine the influence of viscoelastic and structural (Coulomb friction) damping on oscillator motion. Illustrative examples show that the inclusion of linear or nonlinear viscoelastic material properties significantly affects oscillator responses as related to amplitudes, phase shifts and energy loses when compared to equivalent elastic ones.  相似文献   

8.
The paper deals with the problem of the determination of the in-plane behavior of periodic masonry material. The macromechanical equivalent Cosserat medium, which naturally accounts for the absolute size of the constituents, is derived by a rational homogenization procedure based on the Transformation Field Analysis. The micromechanical analysis is developed considering a Cauchy model for masonry components. In particular, a linear elastic constitutive relationship is considered for the blocks, while a nonlinear constitutive law is adopted for the mortar joints, accounting for the damage and friction phenomena occurring during the loading history. Some numerical applications are performed on a Representative Volume Element characterized by a selected commonly used texture, without performing at this stage structural analyses. A comparison between the results obtained adopting the proposed procedure and a nonlinear micromechanical Finite Element Analysis is presented. Moreover, the substantial differences in the nonlinear behavior of the homogenized Cosserat material model with respect to the classical Cauchy one, are illustrated.  相似文献   

9.
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both regimes of linear and essentially nonlinear sloshing. The latter regime involves hydraulic impacts applied to the walls of the vessel. These hydraulic impacts are commonly simulated with the help of high-power potential and dissipation functions. For analytical treatment, we substitute this traditional approach by consideration of the impacts with velocity-dependent restitution coefficient. The resulting model is similar to recently explored vibro-impact nonlinear energy sink (VI NES) attached to externally forced linear oscillator. This similarity allowed exploration of possible response regimes. Steady-state and chaotic strongly modulated responses are encountered. Besides, we simulated the responses to horizontal excitation with addition of Gaussian white noise, and related them to reduced dynamics of the system on a slow invariant manifold (SIM). All analytical predictions are in good agreement with direct numerical simulations of the initial reduced-order model.  相似文献   

10.
The resonance dynamics of a dissipative spring-mass and of a dissipative spring-pendulum system is studied. Internal resonance case is considered for the first system; both external resonances and simultaneous external and internal resonance are studied for the second one. Analysis of the systems resonance behavior is made on the base of the concept of nonlinear normal vibration modes (NNMs) by Kauderer and Rosenberg, which is generalized for dissipative systems. The multiple time scales method under resonance conditions is applied. The resulting equations are reduced to a system with respect to the system energy, arctangent of the amplitudes ratio and the difference of phases of required solution in the resonance vicinity. Equilibrium positions of the reduced system correspond to nonlinear normal modes; in energy dissipation case they are quasi-equilibriums. Analysis of the equilibrium states of the reduced system permits to investigate stability of nonlinear normal modes in the resonance vicinity and to describe transfer from unstable vibration mode to stable one. New vibration regimes, which are called transient nonlinear normal modes (TNNMs) are obtained. These regimes take place only for some particular levels of the system energy. In the vicinity of values of time, corresponding to these energy levels, the TTNM attract other system motions. Then, when the energy decreases, the transient modes vanish, and the system motions tend to another nonlinear normal mode, which is stable in the resonance vicinity. The reliability of the obtained analytical results is confirmed by numerical and numerical-analytical simulations.  相似文献   

11.
The problem on determination of the nonlinear dissipative and elastic characteristics of some vibrating systems that are encountered in structural seismodynamics is considered. Systems of integral Volterra equations of the first kind (Abel-type equations) are constructed on the basis of approximate analytical solutions to problems on the forced vibration of quasilinear vibrating systems. Such equations relate the nonlinear stiffness and dissipation characteristics with the characteristics of motion, which can be obtained experimentally. The solutions of the integral equations derived are represented in the form of quadrature Stieltjes-integral formulas  相似文献   

12.
The mechanism underlying the lock-in of frequencies in flow-induced vibrations is analysed using elementary linear dynamics. Considering the case of lock-in in vortex-induced vibrations (VIV), we use a standard wake oscillator model, as in previous studies, but in its simplest form where all nonlinear terms and all dissipative terms are neglected. The stability of the resulting linear system is analysed, and a range of coupled-mode flutter is found. In this range, the frequency of the most unstable mode is found to deviate from the Strouhal law when the frequency of the wake oscillator approaches that of the free cylinder motion. Simultaneously the growth rate resulting from coupled-mode flutter increases, which would lead to higher vibration amplitudes. The extent of the range of lock-in is then compared with experimental data, showing a good agreement. It is therefore stated that the lock-in phenomenon, such as in VIV, is a particular case of linear coupled-mode flutter.  相似文献   

13.
Micromechanical oscillators often display rich dynamics due to nonlinearities in their response, actuation, and detection. This paper investigates the complicated response of a forced micromechanical oscillator. In particular, we investigate a thermally induced transition in the resonant response of a forced micromechanical oscillator with optical detection; and the branches of invariant tori formed at subsequent bifurcations that occur with increasing laser power. We use perturbation theory and continuation algorithms to investigate and compute these branches of invariant tori. The results of both methods are compared.  相似文献   

14.
Zhu  W. Q.  Ying  Z. G.  Soong  T. T. 《Nonlinear dynamics》2001,24(1):31-51
A strategy for optimal nonlinear feedback control of randomlyexcited structural systems is proposed based on the stochastic averagingmethod for quasi-Hamiltonian systems and the stochastic dynamicprogramming principle. A randomly excited structural system isformulated as a quasi-Hamiltonian system and the control forces aredivided into conservative and dissipative parts. The conservative partsare designed to change the integrability and resonance of the associatedHamiltonian system and the energy distribution among the controlledsystem. After the conservative parts are determined, the system responseis reduced to a controlled diffusion process by using the stochasticaveraging method. The dissipative parts of control forces are thenobtained from solving the stochastic dynamic programming equation. Boththe responses of uncontrolled and controlled structural systems can bepredicted analytically. Numerical results for a controlled andstochastically excited Duffing oscillator and a two-degree-of-freedomsystem with linear springs and linear and nonlinear dampings, show thatthe proposed control strategy is very effective and efficient.  相似文献   

15.
We explore the conservative and dissipative dynamics of a two-degree-of-freedom (2-DoF) system consisting of a linear oscillator and a lightweight nonlinear rotator inertially coupled to it. When the total energy of the system is large enough, the motion of the rotator is, generically, chaotic. Moreover, we show that if the damping of the rotator is sufficiently small and the damping of the linear oscillator is even smaller, then the system passes through a cascade of resonance captures (transient internal resonances) as the total energy gradually decreases. Rather unexpectedly, all these captures have the same principal frequency but correspond to different nonlinear normal modes (NNMs). In each NNM, the rotator is phase-locked into periodic motion with two frequencies. The NNMs differ by the ratio of these frequencies, which is approximately an integer for each NNM. Essentially non-integer ratios lead to incommensurate periods of ??slow?? and ??fast?? motions of the rotator and, thus, to its chaotic behavior between successive resonance captures. Furthermore, we show that these cascades of resonance captures lead to targeted energy transfer (TET) from the linear oscillator to the rotator, with the latter serving, in essence, as a nonlinear energy sink (NES). Since the inertially-coupled NES that we consider has no linearized natural frequency, it is capable of engaging in resonance with the linear oscillator over broad frequency and energy ranges. The results presented herein indicate that the proposed rotational NES appears to be a promising design for broadband shock mitigation and vibration energy harvesting.  相似文献   

16.
Wagg  David J. 《Meccanica》2003,38(2):227-238
In this paper we consider using a model reference adaptive control approach to control nonlinear systems. We consider the controller design and stability analysis associated with these type of adaptive systems. Then we discuss the use of model reference adaptive control algorithms to control systems which exhibit nonlinear dynamical behaviour using the example of a Duffing oscillator being controlled to follow a linear reference model. For this system we show that if the nonlinearity is small then standard linear model reference control can be applied. A second example, which is often found in synchronization applications, is when the nonlinearities in the plant and reference model are identical. Again we show that linear model reference adaptive control is sufficient to control the system. Finally we consider controlling more general nonlinear systems using adaptive feedback linearization to control scalar nonlinear systems. As an example we use the Lorenz and Chua systems with parameter values such that they both have chaotic dynamics. The Lorenz system is used as a reference model and a single coordinate from the Chua system is controlled to follow one of the Lorenz system coordinates.  相似文献   

17.
利用平均化方法提出了倾斜内锁型三维机织陶瓷基复合材料弹性性能分析的三维细观力学模型,对材料的弹性性能进行了预测。这个力学模型考虑了倾斜内锁型三维机织陶瓷基复合材料经向纤维束的弯曲和纬向纤维束的平直,纤维束的横截面形状尺寸和相邻纤维束之间的孔洞以及材料制造过程中碳纤维性能下降对弹性性能的影响。基于层合板理论,提出两种单胞应变状态假设分别对材料的九个弹性常数进行了推导计算,结果表明两种方法理论的预测值非常接近。计算结果与实验值比较吻合,表明所提出的细观力学模型是合理的,可以为纺织陶瓷基复合材料的优化设计提供有价值的参考。  相似文献   

18.
An accurate nonlinear model for electrostatically actuated beams made of nanocrystalline materials is proposed accounting for the beam material structure and the beam size effects. Two sets of measures are incorporated in the context of the proposed model to account for the inherent properties (the material structure related properties) and the acquired properties (the size dependent properties) of the beam. The inherent properties of the beam are modeled via a micromechanical model while the acquired properties are modeled via a non-classical continuum beam theory. The micromechanical model for nanocrystalline materials is proposed where the necessary measures to account for the effects of the grain size, the voids percent and size, and the interface (grain boundary) are incorporated. All the measures presented in the micromechanical model are related to the material structure to correctly model the structure of nanocrystalline materials. According to the classical couple stress and Gurtin-Murdoch surface elasticity theories, a size-dependent Euler-Bernoulli beam model is developed to model the mechanics of electrostatically actuated nano-beams. For the first time, the impacts of the beam material structure along with the beam size on the nonlinear dynamics and pull-in instability behaviors of electrostatically actuated nano-beams are intensively studied. The performed analyses through the present effort reflect the great impacts of the beam material structure and the beam size on the static pull-in, the natural frequencies, the dynamic pull-in, and nonlinear dynamics of electrostatically actuated nano-beams.  相似文献   

19.
提出了一个细观力学模型,可用于预测高体积含量非线性黏弹复合材料有效性质.该模型基于广义割线模量法、双球法以及Laplace-Carson变换技术.所提出的模型对玻璃微珠填充高密度聚乙烯(GB/HDPE)复合材料的应力应变关系进行了预测,结果与文献实验结果吻合;计算结果还表明在高体积百分比下文中所提出的方法比基于MT方法预测的粘性效应明显减弱;最后还将所提方法与线黏弹框架下的均质化模型做了比较,结果表明GB/HDPE表现出明显的非线性,线黏弹本构无法描述应变率对其力学行为的影响.  相似文献   

20.
We study the 1:3 resonant dynamics of a two degree-of-freedom (DOF) dissipative forced strongly nonlinear system by first examining the periodic steady-state solutions of the underlying Hamiltonian system and then the forced and damped configuration. Specifically, we analyze the steady periodic responses of the two DOF system consisting of a grounded strongly nonlinear oscillator with harmonic excitation coupled to a light linear attachment under condition of 1:3 resonance. This system is particularly interesting since it possesses two basic linearized eigenfrequencies in the ratio 3:1, which, under condition of resonance, causes the localization of the fundamental and third-harmonic components of the responses of the grounded nonlinear oscillator and the light linear attachment, respectively. We examine in detail the topological structure of the periodic responses in the frequency–energy domain by computing forced frequency–energy plots (FEPs) in order to deduce the effects of the 1:3 resonance. We perform complexification/averaging analysis and develop analytical approximations for strongly nonlinear steady-state responses, which agree well with direct numerical simulations. In addition, we investigate the effect of the forcing on the 1:3 resonance phenomena and conclude our study with the stability analysis of the steady-state solutions around 1:3 internal resonance, and a discussion of the practical applications of our findings in the area of nonlinear targeted energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号