首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial compression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discrete element method. All assemblies were prepared at their densest condition, and triaxial compression tests were performed up to extremely large strains, until a critical state was reached. The stress–strain relationship and the void ratio–strain behavior were evaluated. We found that the stress–dilatancy relationship of ellipsoids with different aspect ratios could be expressed as a linear equation. In particular, the aspect ratio influenced the position of the critical state lines for these assemblies. Particle-scale characteristics at the critical state indicate that particles tend to be flat lying, and the obstruction of particle rotation that occurs with longer particles affects their contact mechanics. Lastly, anisotropic coefficients related to aspect ratio were investigated to probe the microscopic origins of the macroscopic behavior. A detailed analysis of geometrical and mechanical anisotropies revealed the microscopic mechanisms underlying the dependency of peak and residual strengths on aspect ratio.  相似文献   

2.
In this paper, a discrete element simulation scheme for pebble beds in fusion blankets is presented. Each individual pebble is considered as one element obeying equilibrium conditions under contact forces. We study not only the rearrangement of particles but also the overall behaviour of an assembly under the action of macroscopic compressive stresses. Using random close packing as initial configurations, the discrete element simulation of the uniaxial compression test has been quantitatively compared to experiments. This method yields the distribution of the inter-particle contact forces. Moreover, the micro-macro relations have been investigated to relate the microscopic information, such as the maximum contact force and the coordination number inside the assembly, to the macroscopic stress variables.  相似文献   

3.
The present work is a detailed study of the connections between microstructural instabilities and their macroscopic manifestations — as captured through the effective properties — in finitely strained fiber-reinforced elastomers, subjected to finite, plane-strain deformations normal to the fiber direction. The work, which is a complement to a previous and analogous investigation by the same authors on porous elastomers, (Michel et al., 2007), uses the linear comparison, second-order homogenization (S.O.H.) technique, initially developed for random media, to study the onset of failure in periodic fiber-reinforced elastomers and to compare the results to more accurate finite element method (F.E.M.) calculations. The influence of different fiber distributions (random and periodic), initial fiber volume fraction, matrix constitutive law and fiber cross-section on the microscopic buckling (for periodic microgeometries) and macroscopic loss of ellipticity (for all microgeometries) is investigated in detail. In addition, constraints to the principal solution due to fiber/matrix interface decohesion, matrix cavitation and fiber contact are also addressed. It is found that both microscopic and macroscopic instabilities can occur for periodic microstructures, due to a symmetry breaking in the periodic arrangement of the fibers. On the other hand, no instabilities are found for the case of random microstructures with circular section fibers, while only macroscopic instabilities are found for the case of elliptical section fibers, due to a symmetry breaking in their orientation.  相似文献   

4.
颗粒材料三维应力路径下的接触组构特性   总被引:1,自引:0,他引:1  
颗粒材料的宏观应力变形特征与其微观接触力、组构等紧密相关.一般而言,强接触系统属于颗粒内部体系的传力结构,其对应的组构张量是影响宏观应力性质的重要因素.细观数值方法(如离散单元法)能够反映物理试验的基本规律,并且可以方便地提取宏微观数据来研究颗粒体系的应力变形机制.采用离散单元法(discrete element method,DEM)进行一系列等$p$等$b$应力路径下颗粒材料的真三轴试验,在此基础上研究了三维应力路径下颗粒材料的宏微观力学参数的演化过程、三维组构张量与应力张量多重联系以及强接触体系反映的宏观应力特征.研究表明:颗粒体系偏应力峰值状态和临界状态均存在与加载路径无关的宏微观特征;三维应力路径下组构张量与应力张量存在非共轴性,但其联合不变量演化过程表现出加载路径无关的特征;与弱接触系统的组构张量相比,强接触系统的组构张量更能反映宏观应力张量的特征;强弱接触体系的组构张量对颗粒体系宏观响应的贡献不同,其分界点存在一定取值范围,但采用平均接触力较为简单合理.   相似文献   

5.
A homogenization framework is developed for determining the complete macroscopic thermomechanical sliding contact response of soft interfaces with microscopic roughness. To this end, a micro–macro mechanical dissipation equality is first established which enables defining a macroscopic frictional traction. The derivation allows both contacting bodies to be deformable, thereby extending the commonly adopted setting where one of the bodies is rigid. Moreover, it forms a basis for the second step, where a novel micro–macro thermal dissipation equality is established which enables defining partitioning coefficients that are associated with the frictional dissipation as it is perceived on the macroscale. Finally, a comparison of the temperature fields from the original heterogeneous thermomechanical contact problem and an idealized homogeneous one reveals an identification of the macroscopic temperature jump. The computational implementation of the framework is carried out within an incrementally two-phase micromechanical test which delivers a well-defined macroscopic response that is not influenced by purely algorithmic choices such as the duration of sliding. Two-dimensional numerical investigations on periodic and random samples from thermo-viscoelastic boundary layers with unilateral and bilateral roughness demonstrate the temperature–velocity–pressure dependence of the macroscopic contact response.  相似文献   

6.
In this paper, strength properties of nanoporous materials with spheroidal nanocavities are investigated via a Molecular Dynamics approach applied to a nanovoided aluminium single crystal, in the case of a fixed porosity level, and for prolate, oblate and spherical void shapes. Estimates of the effective strength domain are provided, by considering several mechanical loadings including axisymmetric and shear strain-rate states. Void-shape effects are quantified for different values of the void aspect ratio, mainly resulting in an overall weakening of the sample as the spheroidal nanovoid assumes either an oblate or a prolate shape, in comparison to the case of a spherical void. Finally, it is observed that the computed strength profiles exhibit the following specific features: (i) a strong dependence on the hydrostatic, second-order and third-order deviatoric stress invariants, (ii) more significant void-shape effects for triaxial-expansion stress states with a small hydrostatic component, and (iii) a more pronounced influence of the spheroid shape, as the aspect ratio is varied, in the presence of an oblate nanovoid rather than of a prolate one.  相似文献   

7.
8.
We present generalizations of Hill's classical results concerned with the macroscopic strain and stress measures. Generalizations involve polynomial boundary conditions and polynomial moments of the microscopic fields. It is shown that for higher-order polynomials certain boundary conditions and moments should be excluded from considerations in order to guarantee unique relationships between boundary data and macroscopic measures. Particularly simple relationships are obtained for spherical specimens, for which higher-order macroscopic measures are defined in terms of spherical harmonics. Also it is demonstrated that higher-order macroscopic measures and constitutive equations can be useful in multi-scale analysis of problems formulated in terms of integral equations.  相似文献   

9.
In granular mechanics, macroscopic approaches treat a granular material as an equivalent continuum at macro-scale, and study its constitutive relationship between macro-quantities, such as stresses and strains. On the other hand, microscopic approaches consider a granular material as an assembly of individual particles interacting with each other at micro-scale (i.e., particle-scale), and the physical quantities under study are forces and displacements. This paper aims at linking up the findings from these two scales and to establish the macro–micro relations in granular mechanics.Three aspects of the macro–micro relations are investigated. They are about the internal structure, the stress tensor and the strain tensor. The internal structure is described with geometrical systems at the particle scale. Micro-structural definitions of the stress and strain tensors are derived, which link the macro-stress tensor with the contact forces, and the macro-strain tensor with the relative displacements at contact. In addition to a brief review of the past research work on these topics, further generalizations are made in this paper. In particular, the two cell systems proposed by Li and Li (2009), namely the solid cell system and the void cell system, are introduced and used for the derivation of the macro-structural expressions. The stress expression is derived based on Newton’s second law of motion. The result is valid for both static and dynamic cases. The strain expression is derived based on the compatibility requirement. And the expression is valid for any tessellation subdividing the granular assembly into polyhedral elements.The homogenization for deriving a macroscopic constitutive relationship from microscopic behaviour is discussed. Attention is placed on the macroscopic quantification of the internal structure in terms of a second rank tensor, known as the fabric tensor. Existing definitions of the fabric tensors have been reviewed. The correlations among different fabric tensors and their relations with the stress–strain behaviours have been investigated.  相似文献   

10.
In this paper, a multiscale model that combines both macroscopic and microscopic analyses is presented for describing the ductile fracture process of crystalline materials. In the macroscopic fracture analysis, the recently developed strain gradient plasticity theory is used to describe the fracture toughness, the shielding effects of plastic deformation on the crack growth, and the crack tip field through the use of an elastic core model. The crack tip field resulting from the macroscopic analysis using the strain gradient plasticity theory displayes the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic fracture analysis, the discrete dislocation theory is used to describe the shielding effects of discrete dislocations on the crack growth. The result of the macroscopic analysis near the crack tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis. The equilibrium locations of the discrete dislocations around the crack and the shielding effects of the discrete dislocations on the crack growth at the microscale are calculated. The macroscopic fracture analysis and the microscopic fracture analysis are connected based on the elastic core model. Through a comparison of the shielding effects from plastic deformation and the discrete dislocations, the elastic core size is determined.  相似文献   

11.
12.
王蕉  楚锡华 《力学学报》2021,53(9):2395-2403
研究颗粒材料中的波传播问题在超材料制造方面有重要意义, 如波传导超材料边界的设计需考虑应力波的反射和吸收等问题. 本文从一维颗粒链中的波传播行为出发, 根据距边界不同位置处颗粒能够得到的最大动能的不同, 给出了临边界区域的定义. 然后分析了多组二维颗粒样本在冲击载荷作用下应力波的传播行为, 主要考虑了不同边界形状及不同颗粒排列方式对应力波在临边界区域内传播行为的影响. 研究表明, 临边界区颗粒排列方式主要影响边界附近颗粒的相对位置和局部孔隙率; 经边界反射后的应力波直接以边界形状在临边界区内传播, 该结论在边界情况越复杂(高局部孔隙率, 颗粒无序随机排列)时越准确; 在临边界区域外(即材料中心区域), 波前形状主要由波速决定. 弧形边界对波反射的汇聚作用和临边界区域内颗粒的排列方式所引起的弥散作用是两个竞争因素, 共同决定临边界区域内波的反射过程. 最后分析了临边界区域内颗粒力链网络在反射前后的变化. 该研究将为超材料设计提供借鉴.   相似文献   

13.
This paper presents a micromechanical analysis of the macroscopic behaviour of natural clay. A microstructural stress–strain model for clayey material has been developed which considers clay as a collection of clusters. The deformation of a representative volume of the material is generated by mobilizing and compressing all the clusters along their contact planes. Numerical simulations of multistage drained triaxial stress paths on Otaniemi clay have been performed and compared the numerical results to the experimental ones in order to validate the modelling approach. Then, the numerical results obtained at the microscopic level were analysed in order to explain the induced anisotropy observed in the clay behaviour at the macroscopic level. The evolution of the state variables at each contact plane during loading can explain the changes in shape and position in the stress space of the yield surface at the macroscopic level, as well as the rotation of the axes of anisotropy of the material.  相似文献   

14.
Stress evolution in a dense granular material is closely related to interactions of contacting particles. We investigate statistics related to particle interactions and the relationship between the averaged local relative motion and the macroscopic motion. The validity of the Voigt and Reuss assumptions is examined, and extensions to these assumptions are proposed. Effects of history in the dense granular material are investigated. Statistical samples used in this paper are obtained using three-dimensional numerical simulations of dense granular media under uniaxial cyclical compression. The results show that stresses arise mostly from normal forces between particles, and direct contributions from frictional tangential forces between particles are small. Tangential friction, however, significantly increases the particle contact time, and thus reduces the rate of contact breakage. The contact breakage rate is demonstrated to be a stress relaxation rate. Therefore, stress increases significantly with friction between particles as a result of prolonged relaxation time.  相似文献   

15.
Higher order gradient continuum theories have often been proposed as models for solids that exhibit localization of deformation (in the form of shear bands) at sufficiently high levels of strain. These models incorporate a length scale for the localized deformation zone and are either postulated or justified from micromechanical considerations. Of interest here is the consistent derivation of such models from a given microstructure and the subsequent comparison of the solution to a boundary value problem using both the exact microscopic model and the corresponding approximate higher order gradient macroscopic model.In the interest of simplicity the microscopic model is a discrete periodic nonlinear elastic structure. The corresponding macroscopic model derived from it is a continuum model involving higher order gradients in the displacements. Attention is focused on the simplest such model, namely the one whose energy density involves only the second order gradient of the displacement. The discrete to continuum comparisons are done for a boundary value problem involving two different types of macroscopic material behavior. In addition the issues of stability and imperfection sensitivity of the solutions are also investigated.  相似文献   

16.
分别利用LS-DYNA3D有限元程序以及分子动力学方法,从宏观与微观两个层次模拟在动态拉伸载荷作用下含有预置缺陷的薄板中的塑性区形成与演化过程,以及随之而来的动态失效行为。计算结果表明,动态加载下塑性区的形成是应力波与缺陷相互作用以及应力波与应力波相互作用的结果。宏观尺度的LS-DYNA模拟与微观尺度的分子动力学模拟展现出相似的物理特征,即动态载荷下裂纹将萌生在缺陷边缘的前端,然后与缺陷边界连接,最终导致整体破坏。  相似文献   

17.
We study the well-posedness of a multi-scale model of polymeric fluids. The microscopic model is the kinetic theory of the finitely extensible nonlinear elastic (FENE) dumbbell model. The macroscopic model is the incompressible non-Newton fluids with polymer stress computed via the Kramers expression. The boundary condition of the FENE-type Fokker-Planck equation is proved to be unnecessary by the singularity on the boundary. Other main results are the local existence, uniqueness and regularity theorems for the FENE model in certain parameter range.  相似文献   

18.
A multi-scale model for the structural analysis of the in-plane response of masonry panels, characterized by periodic arrangement of bricks and mortar, is presented. The model is based on the use of two scales: at the macroscopic level the Cosserat micropolar continuum is adopted, while at the microscopic scale the classical Cauchy medium is employed. A nonlinear constitutive law is introduced at the microscopic level, which includes damage, friction, crushing and unilateral contact effects for the mortar joints. The nonlinear homogenization is performed employing the Transformation Field Analysis (TFA) technique, properly extended to the macroscopic Cosserat continuum. A numerical procedure is developed and implemented in a Finite Element (FE) code in order to analyze some interesting structural problems. In particular, four numerical applications are presented: the first one analyzes the response of the masonry Representative Volume Element (RVE) subjected to a cyclic loading history; in the other three applications, a comparison between the numerically evaluated response and the micromechanical or experimental one is performed for some masonry panels.  相似文献   

19.
The objective of this article is to derive a macroscopic Darcy’s law for a fluid-saturated moving porous medium whose matrix is composed of two solid phases which are not in direct contact with each other (weakly coupled solid phases). An example of this composite medium is the case of a solid matrix, unfrozen water, and an ice matrix within the pore space. The macroscopic equations for this type of saturated porous material are obtained using two-space homogenization techniques from microscopic periodic structures. The pore size is assumed to be small compared to the macroscopic scale under consideration. At the microscopic scale the two weakly coupled solids are described by the linear elastic equations, and the fluid by the linearized Navier–Stokes equations with appropriate boundary conditions at the solid–fluid interfaces. The derived Darcy’s law contains three permeability tensors whose properties are analyzed. Also, a formal relation with a previous macroscopic fluid flow equation obtained using a phenomenological approach is given. Moreover, a constructive proof of the existence of the three permeability tensors allows for their explicit computation employing finite elements or analogous numerical procedures.  相似文献   

20.
锻压过程宏-细观跨尺度仿真研究   总被引:2,自引:1,他引:1  
杜凤山  李源  王珉  李杰  范俊锴 《计算力学学报》2014,31(6):799-804,810
采用基于Voronoi图的微结构模型,针对Cr5锻件锻压过程中晶体之间滑移趋势进行了有限元仿真研究。并根据晶粒接触滑移角度的不同,对锻压过程中不同应力区域晶粒应力、滑移剪切力的不均匀分布进行了统计和分析。将宏观有限元分析的特定区域的分析结果耦合成相应尺寸的细观模型的边界条件,从而实现了针对应力集中区域的宏-细观跨尺度的仿真。所得结果表明,材料内部滑移趋势受接触滑移角度影响很大,位于宏观滑移区的材料,在细观模型中的滑移趋势同样明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号