首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A U-type microemulsion of Brij 96 has been characterized with respect to the change in cosurfactant, oil chain length on dilution, water solubility, and water solubilization capacity. The phase behavior of the systems has been mapped with different oils. Several techniques, viz., conductivity, optical microscopy, dilution method, absorption, and FT-IR spectroscopy, have been used for microemulsion analysis. The equilibrium within the microemulsion droplets and liquid crystals has been visualized using optical microscopy. The microemulsions have evidenced volume-induced conductance percolation in all the cosurfactants (n2n6 alcohols). The energetics of transfer of alcohol from the bulk oil to the interface has been determined through dilution method. To gain insight into the microenvironment of microemulsion, two optical probes, hydrophilic (Methyl orange) and hydrophobic (Nile red), have been utilized in absorption spectroscopy. Lastly, FT-IR has been explored to observe the state and dissolution behavior of water with increasing weight fraction.  相似文献   

2.
The spherical agglomeration of barite particles using oil in the presence of both surfactant and cosurfactant was studied. It was found that the mineral suspension needed a critical surfactant concentration to initiate oil agglomeration. The addition of long-chain aliphatic alcohols to the organic phase decreased the critical surfactant concentration. This phenomenon was ascribed to a screening effect of alcohol molecules in the adsorption layer of surfactant. When sodium chloride was added to the solution the spherical agglomeration disappeared even though the surfactant adsorption at the barite/solution interface increased. It was concluded that the disappearance of oil agglomeration was caused by a bilayer of the surfactant which was formed on the barite surface. In the barite—surfactant—alcohol—oil—brine system the agglomeration process is only realized with the long-chain alcohols. This behaviour can be explained by microemulsion formation at the mineral/solution interface.  相似文献   

3.
倪鹏a 侯万国 a  b 《中国化学》2008,26(7):1335-1338
通常微乳液一般由四个组分构成:水相、油相、表面活性剂和助表面活性剂。本文报道了一种不含表面活性剂的微乳液体系(简称SFME),由呋喃甲醛(油相),水和N,N-二甲基甲酰胺(DMF)三组分构成,不含传统的表面活性剂。对其相行为进行了研究,发现存在一个单相微乳液区和一个两相平衡区。采用电导率法和冷冻蚀刻电镜(FF-TEM)考察了单相区域中微乳液的微结构,结果表明可分为油包水(O/W)、双连续(BC)和水包油(W/O)三个区域。液滴直径介于40-70nm。  相似文献   

4.
The hydrophile-lipophile property of the sucrose monododecanoate changes from hydrophilic to lipophilic by adding an alcohol as a cosurfactant. With the addition of a short-alkyl-chain alcohol (pentanol, hexanol), the surfactant forms the middle-phase microemulsion whereas a lamellar liquid crystal (L!) appears with a medium- or long-chain alcohol (heptanol, octanol, decanol) at the balanced state in water/ SE/ cosurfactant/ decane system. The effect of changing oil was also studied in the presence of a middle-chain cosurfactant (heptanol). A short-chain aromatic oil (m-xylene) forms middle-phase microemulsion whereas a longer aliphatic one (hexadecane) forms lamellar liquid crystalline phase in a dilute region when the HLB of surfactant is balanced in a given system. O/W emulsions become stable on the hydrophilic-surfactant-rich side whereas W/O emulsions are stable on the cosurfactant-rich side. Emulsions are very unstable in the three-phase regions. However, when the lamellar phase is produced, emulsions become stable at the balanced state because water and oil are incorporated in L! phase in the longer cosurfactant systems such as water/ SE/ octanol/ decane and water/ SE/ decanol/ decane.  相似文献   

5.
A series of microemulsions, both W/O and O/W, based on nonionic surfactants of the form (NP(EO)n), were prepared using the titration method. Mixing a constant weight of surfactant with a constant volume of the dispersed phase and an initial volume of continuous phase produces an emulsion, which is titrated to clarity with another surfactant (cosurfactant). Plotting (a) the volume of cosurfactant necessary to transform an emulsion into a microemulsion containing a fixed volume of dispersed phase and constant weight of surfactant versus (b) different initial continuous-phase volumes yields a straight line. Extrapolating from experimentally determined values for the cosurfactant volume to the value corresponding to a zero-volume continuous phase allows the determination of the surfactant molar composition and the average number of ethylene oxides (EO) per nonylphenol adsorbed at the interface. Using a surfactant with the same number of ethylene oxides yields a single-surfactant microemulsion. Measurement of surfactants transmittance in the oil and water phases demonstrates that microemulsification occurs when the surfactant interfacial film is equally soluble in the two phases. Surface pressure measurements reveal that oil penetration impedes formation of O/W microemulsions with n-tetradecane or n-hexadecane as dispersed phase. Conductance, particle size, and transmittance measurements show that above a certain dispersed-phase volume percolation of the microemulsion occurs.  相似文献   

6.
Water in oil microemulsions, consisting of water, AOT and n-decane, have been used as a model system to investigate the influence of the water soluble polymer PEO on the dynamical behavior of the system. Therefore dielectric relaxation spectroscopy and conductivity, extracted from dielectric spectroscopy, measurements in a wide frequency and temperature range have been applied. The pure microemulsion displays the known phenomenon of percolation that manifests in a steep increase of conductivity at the percolation temperature $T_\text{P}Water in oil microemulsions, consisting of water, AOT and n-decane, have been used as a model system to investigate the influence of the water soluble polymer PEO on the dynamical behavior of the system. Therefore dielectric relaxation spectroscopy and conductivity, extracted from dielectric spectroscopy, measurements in a wide frequency and temperature range have been applied. The pure microemulsion displays the known phenomenon of percolation that manifests in a steep increase of conductivity at the percolation temperature T\textPT_\text{P}. The percolation temperature has been found to be strongly dependent on droplet volume fraction and droplet size. The latter additionally shows that percolation temperature and surfactant film rigidity are proportional. Far from percolation water-AOT-n-decane microemulsions display two dielectric relaxations. The slower one has a relaxation time of t ? 3·10-6 \texts\tau \approx 3\cdot 10^{-6}~\text{s} and can be related to an interfacial polarization at the interface of the water core and the AOT shell (core relaxation). The faster one has a relaxation time of t ? 10-9 \texts\tau \approx 10^{-9}~\text{s} and can be related to the ions in the AOT shell(shell or cluster relaxation). While the first is mainly untouched by the percolation phenomenon, the latter undergoes a slowdown and an increase of relaxation strength, both over about two decades, on approaching the percolation transition. Addition of PEO tremendously shifts the percolation transition to higher temperatures, due to adsorption at the AOT layer which leads to an increase in rigidity. Furthermore a lower phase boundary temperature evolves, below which the microemulsion phase separates. The conductivity of the microemulsion is also slightly increased with polymer. The effect on the dielectric properties is only small, where dielectric relaxation times are reduced by the polymer, while only the relaxation strength of the faster relaxation is influenced and also decreases with polymer. The decreased relaxation time of core relaxation can be either due to changes in the core to shell volume ratio or an increased conductivity of the water core. The decrease in relaxation time and strength of the shell relaxation suggest that the ion mobility in the shell increase, while the dipole moment is reduced. Additionally we applied a cluster relaxation model proposed by Cametti et al. (Phys Rev Lett 75(3):569, 1995) and Bordi et al. (J Phys, Condens Matter 8:A19, 1996) to estimate the cluster size evolution.  相似文献   

7.
The influence of the nonionic polymer poly(N-vinyl-2-pyrrolidone) (PVP) in comparison to the surfactant 1-octyl-2-pyrrolidinone (OP) on the phase behavior of the system SDS/pentanol/xylene/water was studied. In both modified systems a strong increase in the water solubilization capacity was found, accompanied by a change in the spontaneous curvature toward zero. In the polymer-modified system an isotropic phase channel is formed with increasing polymer content that connects the L1 and the L2 phase. The lamellar liquid crystalline phase is destabilized in both cases. In the L1 phase the adsorption of PVP at the surface of the microemulsion droplets and the formation of a cluster-like structure is proven by several methods like 13C NMR T1 relaxation time measurments, zeta potential measurements, and rheology. In the L2 phase a modification of the interface of the inverse droplets is detected by a shift in the percolation boundary (conductivity) and 13C NMR T1 relaxation measurements. The formation of a cluster-like structure can be assumed on the basis of our rheological measurements.  相似文献   

8.
Middle-phase microemulsions of green surfactant alkyl polyglucosides   总被引:1,自引:0,他引:1  
Microemulsions are important organized molecular assembles in surfactant solutions and are used in various fields such as tertiary oil recovery, pharmaceutics, cosmetics, nanoparticle synthe-sis and chemical engineering. The more commonly used nonionic surfactants to produce micro- emulsions are the ethylene oxide-based compounds (CiEj). In recent years alkyl polyglucosides have been received considerable attention in producing microemulsions[17]. Alkyl polyglucosides (APG), which are widely…  相似文献   

9.
A W/O microemulsion was prepared with Span80-PS (petroleum sulfonate) as complex emulsifier, isopropanol as cosurfactant and kerosene as oil phase. The optimal constituents of microemulsion were found from pseudoternary phase diagrams: the mass ratio of Span80 to PS was 4:1 and complex surfactant to cosurfactant was 1:1. The Fe3O4 magnetic fluid was obtained by one-step method with the W/O microemulsion as microreactor to synthesize magnetic nanoparticles (reaction temperature was 30 °C and reaction time was 5 h) and kerosene as carrier liquid. The magnetic fluid was investigated by TEM, XRD and fluorescence microscope. The magnetism was determined by Gouy magnetic balance. The average particle size of Fe3O4 was 7.4 nm, and magnetic particles were well-dispersed. The stable Fe3O4 magnetic fluid with good magnetism may be produced by one-step method in the W/O microemulsion. Accordingly, the traditional preparation method of magnetic fluid can be simplified greatly. __________ Translated from Chinese Journal of Applied Chemistry, 2005, 22 (7) (in Chinese)  相似文献   

10.
The extraction of cobalt by Winsor II microemulsion system was studied. In the bis (2-ethylhexyl) sulfosuccinate sodium salt (AOT)/n-pentanol/n-heptane/NaCl system, AOT was used as a anionic surfactant to form microemulsion in n-heptane, n-pentanol was injected in the microemulsion as a cosurfactant. Co(II) was found to be extracted into the microemulsion phase due to ion pair formation such as Co2+(R–SO3 )Cl. The influence of different parameters such as the volume ratio of aqueous phase to microemulsion, surfactant concentration, pH of the feed solutions, cosurfactant concentration as well as temperature on the extraction yield (E%) were investigated. The results showed that it was possible to extract 95% of cobalt by the AOT Winsor II microemulsion.  相似文献   

11.
12.
The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.  相似文献   

13.
The influence of short-chain alcohols, 1-butanol (C4OH), 2-pentanol (C5OH) and 1-hexanol (C6OH), on the formation of oil-in-water styrene microemulsions and the subsequent free-radical polymerization was studied. Sodium dodecyl sulfate was used as the surfactant. The overall performance of C4OH as the cosurfactant is quite different from C5OH and C6OH. The range of the microemulsion region in decreasing order is C4OH > C5OH > C6OH. The primary parameters selected for the microemulsion polymerization study were the concentrations of cosurfactant and styrene. Only a small fraction of microemulsion droplets initially present in the reaction system can be successfully transformed into latex particles and the remaining droplets serve as a reservoir to supply the growing particles with monomer. Limited flocculation of latex particles also occurs during polymerization and the degree of flocculation is most significant for the C4OH system. Received: 24 August 1999/Accepted in revised form: 22 October 1999  相似文献   

14.
The mechanisms of oxide gel formation in inverse micelle and lamellar surfactant systems have been investigated by Small Angle Neutron Scattering (SANS). In the first of these processes colloidal particles and gels are formed by the controlled hydrolysis and condensation of metal alkoxides in a reversed microemulsion system (water in oil), where the water is confined in the microemulsion core. With this route the rate of formation and structure of the oxide gel can be controlled by appropriate choice of the surfactant molecule (e.g. chain length) and the volume fraction of the micelles dispersed in the continuous organic phase. Investigations have been made with the system cyclohexane/water/C8E x , where C8E x is the non-ionic surfactant octylphenyl polyoxyethylene. The influence of the size and structure of the microemulsion has been studied by contrast variation (using deuterated solvents) before and during the reaction to form zirconia gels, and the mechanism of gelation is analysed in terms of percolation of fractal cluster aggregates. The structure of gels formed in surfactant/water lamellar phase systems, using surfactants with greater chain length, has also been investigated by SANS. The application of contrast variation to study such anisotropic bilayer systems, in which oriented gel films can be formed, is illustrated.  相似文献   

15.
The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.  相似文献   

16.
We study the effect of polyethylene glycol (PEG) on the dynamic and structure of water droplets at the reverse sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) microemulsion. The mixture of water and oil with anionic surfactant AOT can form microemulsion. The dynamic of microemulsion in the presence of PEG is investigated by photon correlation spectroscopy technique. We mainly focus on the variation of the translational diffusion behaviour as a function of the polymer concentration and polymer length scale. By increasing the content of the lowest PEG length scale (Mn = 285), the dynamic of microemulsion slows down. In addition, one relaxation process is distinguished for all polymer concentration. However, for the two higher polymer length scale (Mn = 2200 and 6000), two relaxations are observed and the dynamic of microemulsion speeds up. We used the small angle X-ray scattering technique to monitor the size and the polydispersity of the mixture system (AOT microemulsion/PEG).  相似文献   

17.
The interfacial and thermodynamic properties of water‐in‐oil microemulsion systems consisting of water, isopropyl myristate, n‐alkanol, and surfactant have been investigated using the method of dilution. The surfactants used were hexadecyl trimethylammonium bromide and sodium dodecylsulfate, and the cosurfactants were n‐alkanols with varying chain length from (C5–C9). The distribution of cosurfactant (n‐alkanol) between the interface of water and oil regions at the threshold level of stability as well as the energetics of the transfer of the cosurfactant from the oil to the interfacial region have been examined as a function of varying cosurfactant chain length (C4–C9) and temperature. The structural parameters (including dimension, population density and effective water pool radius) of the dispersed water droplets in the oil phase have also been evaluated and correlated with alkanol chain length.  相似文献   

18.
Styrene microemulsion polymerizations with different short‐chain alcohols [n‐CiH2i+1OH (CiOH), where i = 4, 5, or 6] as the cosurfactant were investigated. Sodium dodecyl sulfate and sodium persulfate (SPS) were used as the surfactant and initiator, respectively. The desorption of free radicals out of latex particles played an important role in the polymerization kinetics. An Arrhenius expression for the radical desorption rate coefficient was obtained from the polymerizations at temperatures of 50–70 °C. The polymerization kinetics were not very sensitive to the alkyl chain length of alcohols compared with the temperature effect. The maximal polymerization rate in decreasing order was C6OH > C4OH > C5OH. This was related to the differences in the water solubility of CiOH and the structure of the oil–water interface. The feasibility of using a water‐insoluble dye to study the particle nucleation mechanisms was also evaluated. The parameters chosen for the study of the particle nucleation mechanisms include the cosurfactant type (CiOH), the SPS concentration, and the initiator type (oil‐soluble 2,2′‐azobisisobutyronitrile versus water‐soluble SPS). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3199–3210, 2001  相似文献   

19.
The catalytic behaviors of α-chymotrypsin and of trypsin were studied in anionic AOT-isooctane-water and cationic CTAB-ROH-isooctane-water microemulsion systems. The effects of various parameters, such as the pH and the water content expressed in terms of the molar ratio wo = [H2O]/[Surfactant], on the enzyme activity, were examined. The kinetic constants were calculated and it was found that in the case of trypsin the enzyme exhibited a remarkable “superactivityrd, when studied in the CTAB microemulsion systems. The effect of the alcohol cosurfactant used in these cationic systems was investigated in relation to the polarity of the reaction medium. By using the hydrophilic probe 1-methyl-8-oxyquinolinium betaine the micropolarity of the water core was determined and related to the kinetic results.  相似文献   

20.
影响反相微乳液导电性能的因素   总被引:1,自引:0,他引:1  
分别以聚乙二醇辛基苯基醚(Triton X-100)或十六烷基三甲基溴化铵(CTAB)为表面活性剂, 与正己烷、正己醇和水构成反相微乳液. 研究了水相H+浓度、表面活性剂、助表面活性剂等对微乳液导电性能的影响. 结果表明, 增加水相H+浓度可大幅度提高反相微乳液的导电能力, 当H+浓度由1.0 mol•L-1增加到10 mol•L-1时, 微乳液的电导率可提高1~2个数量级. 当水相H+浓度为10 mol•L-1时, 微乳液的电导率随溶水量的增大而增大, 水油体积比为3:10时, 两种体系的电导率均达到3200 μS•cm-1. Triton X-100浓度对微乳液的电导率影响较大, 电导率随其浓度增加而增大;而CTAB浓度对微乳液电导率的影响较小, 电导率随其浓度增加略有减小;助表面活性剂正己醇使非离子型反相微乳液的电导率下降, 而使阳离子型反相微乳液的电导率先增大, 然后减小, 呈骆峰状变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号