首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let(T, d) be a dendrite with finite branch points and f be a continuous map from T to T. Denote byω(x,f) and P(f) the ω-limit set of x under f and the set of periodic points of,respectively. Write Ω(x,f) = {y| there exist a sequence of points x_k E T and a sequence of positive integers n_1 n_2 … such that lim_(k→∞)x_k=x and lim_(k→∞)f~(n_k)(x_k) =y}. In this paper, we show that the following statements are equivalent:(1) f is equicontinuous.(2) ω(x, f) = Ω(x,f) for any x∈T.(3) ∩_(n=1)~∞f~n(T) = P(f),and ω(x,f)is a periodic orbit for every x ∈ T and map h : x→ω(x,f)(x ET)is continuous.(4) Ω(x,f) is a periodic orbit for any x∈T.  相似文献   

2.
The paper is devoted to the normal families of meromorphic functions and shared functions. Generalizing a result of Chang (2013), we prove the following theorem. Let h (≠≡ 0,∞) be a meromorphic function on a domain D and let k be a positive integer. Let F be a family of meromorphic functions on D, all of whose zeros have multiplicity at least k + 2, such that for each pair of functions f and g from F, f and g share the value 0, and f(k) and g(k) share the function h. If for every fF, at each common zero of f and h the multiplicities mf for f and mh for h satisfy mfmh + k + 1 for k > 1 and mf ≥ 2mh + 3 for k = 1, and at each common pole of f and h, the multiplicities nf for f and nh for h satisfy nfnh + 1, then the family F is normal on D.  相似文献   

3.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

4.
For a positive integer m, let f(m) be the maximum value t such that any graph with m edges has a bipartite subgraph of size at least t, and let g(m) be the minimum value s such that for any graph G with m edges there exists a bipartition V (G)=V 1?V 2 such that G has at most s edges with both incident vertices in V i . Alon proved that the limsup of \(f\left( m \right) - \left( {m/2 + \sqrt {m/8} } \right)\) tends to infinity as m tends to infinity, establishing a conjecture of Erd?s. Bollobás and Scott proposed the following judicious version of Erd?s' conjecture: the limsup of \(m/4 + \left( {\sqrt {m/32} - g(m)} \right)\) tends to infinity as m tends to infinity. In this paper, we confirm this conjecture. Moreover, we extend this conjecture to k-partitions for all even integers k. On the other hand, we generalize Alon's result to multi-partitions, which should be useful for generalizing the above Bollobás-Scott conjecture to k-partitions for odd integers k.  相似文献   

5.
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem dx = dA(t) · f(t, x), h(x) = 0 is established, where f: [a, b]×R n → R n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A: [a, b] → R n×n with bounded total variation components, and h: BVs([a, b],R n ) → R n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x(t1(x)) = B(x) · x(t 2(x))+c 0, where t i: BVs([a, b],R n ) → [a, b] (i = 1, 2) and B: BVs([a, b], R n ) → R n are continuous operators, and c 0 ∈ R n .  相似文献   

6.
We consider a natural Lagrangian system defined on a complete Riemannian manifold being subjected to action of a time-periodic force field with potential U(q, t, ε) = f(εt)V(q) depending slowly on time. It is assumed that the factor f(τ) is periodic and vanishes at least at one point on the period. Let X c denote a set of isolated critical points of V(x) at which V(x) distinguishes its maximum or minimum. In the adiabatic limit ε → 0 we prove the existence of a set E h such that the system possesses a rich class of doubly asymptotic trajectories connecting points of X c for εE h .  相似文献   

7.
Let X be a real normed space and let f: ? → X be a continuous mapping. Let T f (t 0) be the contingent of the graph G(f) at a point (t 0, f(t 0)) and let S + ? (0,∞) × X be the “right” unit hemisphere centered at (0, 0 X ). We show that
  1. 1.
    If dimX < ∞ and the dilation D(f, t 0) of f at t 0 is finite then T f (t 0) ∩ S + is compact and connected. The result holds for \(T_f (t_0 ) \cap \overline {S^ + } \) even with infinite dilation in the case f: [0,) → X.
     
  2. 2.
    If dimX = ∞, then, given any compact set F ? S +, there exists a Lipschitz mapping f: ? → X such that T f (t 0) ∩ S + = F.
     
  3. 3.
    But if a closed set F ? S + has cardinality greater than that of the continuum then the relation T f (t 0) ∩ S + = F does not hold for any Lipschitz f: ? → X.
     
  相似文献   

8.
Let S be a countable semigroup acting in a measure-preserving fashion (g ? T g ) on a measure space (Ω, A, µ). For a finite subset A of S, let |A| denote its cardinality. Let (A k ) k=1 be a sequence of subsets of S satisfying conditions related to those in the ergodic theorem for semi-group actions of A. A. Tempelman. For A-measureable functions f on the measure space (Ω, A, μ) we form for k ≥ 1 the Templeman averages \(\pi _k (f)(x) = \left| {A_k } \right|^{ - 1} \sum\nolimits_{g \in A_k } {T_g f(x)}\) and set V q f(x) = (Σ k≥1|π k+1(f)(x) ? π k (f)(x)|q)1/q when q ∈ (1, 2]. We show that there exists C > 0 such that for all f in L 1(Ω, A, µ) we have µ({x ∈ Ω: V q f(x) > λ}) ≤ C(∫Ω | f | dµ/λ). Finally, some concrete examples are constructed.  相似文献   

9.
Let G be a graph with vertex set V(G). For any integer k ≥ 1, a signed total k-dominating function is a function f: V(G) → {?1, 1} satisfying ∑xN(v)f(x) ≥ k for every vV(G), where N(v) is the neighborhood of v. The minimum of the values ∑vV(G)f(v), taken over all signed total k-dominating functions f, is called the signed total k-domination number. In this note we present some new sharp lower bounds on the signed total k-domination number of a graph. Some of our results improve known bounds.  相似文献   

10.
Let U be the quantum group and f be the Lusztig’s algebra associated with a symmetrizable generalized Cartan matrix. The algebra f can be viewed as the positive part of U. Lusztig introduced some symmetries T i on U for all iI. Since T i (f) is not contained in f, Lusztig considered two subalgebras i f and i f of f for any iI, where i f={xf | T i (x) ∈ f} and \({^{i}\mathbf {f}}=\{x\in \mathbf {f}\,\,|\,\,T^{-1}_{i}(x)\in \mathbf {f}\}\). The restriction of T i on i f is also denoted by \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\). The geometric realization of f and its canonical basis are introduced by Lusztig via some semisimple complexes on the variety consisting of representations of the corresponding quiver. When the generalized Cartan matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s symmetries in the sense of Lusztig. In this paper, we shall generalize this result and give geometric realizations of i f, i f and \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\) by using the language ’quiver with automorphism’ introduced by Lusztig.  相似文献   

11.
We study the hybridizable discontinuous Galerkin (HDG) method for the spatial discretization of time fractional diffusion models with Caputo derivative of order 0 < α < 1. For each time t ∈ [0, T], when the HDG approximations are taken to be piecewise polynomials of degree k ≥ 0 on the spatial domain Ω, the approximations to the exact solution u in the L (0, T; L 2(Ω))-norm and to ?u in the \(L_{\infty }(0, \textit {T}; \mathbf {L}_{2}({\Omega }))\)-norm are proven to converge with the rate h k+1 provided that u is sufficiently regular, where h is the maximum diameter of the elements of the mesh. Moreover, for k ≥ 1, we obtain a superconvergence result which allows us to compute, in an elementwise manner, a new approximation for u converging with a rate h k+2 (ignoring the logarithmic factor), for quasi-uniform spatial meshes. Numerical experiments validating the theoretical results are displayed.  相似文献   

12.
We consider the following Turán-type problem: given a fixed tournament H, what is the least integer t = t(n,H) so that adding t edges to any n-vertex tournament, results in a digraph containing a copy of H. Similarly, what is the least integer t = t(T n ,H) so that adding t edges to the n-vertex transitive tournament, results in a digraph containing a copy of H. Besides proving several results on these problems, our main contributions are the following:
  • Pach and Tardos conjectured that if M is an acyclic 0/1 matrix, then any n × n matrix with n(log n) O(1) entries equal to 1 contains the pattern M. We show that this conjecture is equivalent to the assertion that t(T n ,H) = n(log n) O(1) if and only if H belongs to a certain (natural) family of tournaments.
  • We propose an approach for determining if t(n,H) = n(log n) O(1). This approach combines expansion in sparse graphs, together with certain structural characterizations of H-free tournaments. Our result opens the door for using structural graph theoretic tools in order to settle the Pach–Tardos conjecture.
  相似文献   

13.
In this paper a class of correlated cumulative processes, B s (t) = ∑N(t)i=1 H s (X i )X i , is studied with excess level increments X i ?s, where {N(t), t ?0} is the counting process generated by the renewal sequence T n , T n and X n are correlated for given n, H s (t) is the Heaviside function and s?0 is a given constant. Several useful results, for the distributions of B s (t), and that of the number of excess (non-excess) increments on (0, t) and the corresponding means, are derived. First passage time problems are also discussed and various asymptotic properties of the processes are obtained. Transform results, by applying a flexible form for the joint distribution of correlated pairs (T n , X n ) are derived and inverted. The case of non-excess level increments, X i < s, is also considered. Finally, applications to known stochastic shock and pro-rata warranty models are given.  相似文献   

14.
The generalized k-connectivity κ k (G) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λ k (G) = min{λ(S): S ? V (G) and |S| = k}, where λ(S) denotes the maximum number l of pairwise edge-disjoint trees T 1, T 2, …, T l in G such that S ? V (T i ) for 1 ? i ? l. In this paper we prove that for any two connected graphs G and H we have λ 3(GH) ? λ 3(G) + λ 3(H), where GH is the Cartesian product of G and H. Moreover, the bound is sharp. We also obtain the precise values for the generalized 3-edge-connectivity of the Cartesian product of some special graph classes.  相似文献   

15.
Let (j1,..., jn) be a permutation of the n-tuple (1, ..., n). A system of differential equations \(\dot x = {f_i}\left( {{x_{{j_i}}}} \right),i = 1, \ldots ,n\) in which each function fi is continuous on ? is considered. This system is said to have the property of generation of solutions with a small period if, for any number M > 0, there exists a number ω0 = ω0(M) > 0 such that if 0 < ω ≤ ω0 and hi(t, x1, ..., xn) are continuous functions on ? × ?n ω-periodic in t that satisfy the inequalities |hi| ≤ M the system \(\dot x = {f_i}\left( {{x_{{j_i}}}} \right),i = 1, \ldots ,n\) has an ω-periodic solution. It is shown that a system has the property of generation of solutions with a small period if and only if fi(?) = ? for i = 1,..., n. It is also shown that the smallness condition on the period is essential.  相似文献   

16.
In this paper we present two upper bounds on the length of a shortest closed geodesic on compact Riemannian manifolds. The first upper bound depends on an upper bound on sectional curvature and an upper bound on the volume of the manifold. The second upper bound will be given in terms of a lower bound on sectional curvature, an upper bound on the diameter and a lower bound on the volume.The related questions that will also be studied are the following: given a contractible k-dimensional sphere in M n , how “fast” can this sphere be contracted to a point, if π i (M n )={0} for 1≤i<k. That is, what is the maximal length of the trajectory described by a point of a sphere under an “optimal” homotopy? Also, what is the “size” of the smallest non-contractible k-dimensional sphere in a (k-1)-connected manifold M n providing that M n is not k-connected?  相似文献   

17.
We investigate the equiconvergence on TN = [?π, π)N of expansions in multiple trigonometric Fourier series and in the Fourier integrals of functions fLp(TN) and gLp(RN), p > 1, N ≥ 3, g(x) = f(x) on TN, in the case where the “partial sums” of these expansions, i.e., Sn(x; f) and Jα(x; g), respectively, have “numbers” n ∈ ZN and α ∈ RN (nj = [αj], j = 1,..., N, [t] is the integral part of t ∈ R1) containing N ? 1 components which are elements of “lacunary sequences.”  相似文献   

18.
We prove that, given a sequence {ak}k=1 with ak ↓ 0 and {ak}k=1 ? l2, reals 0 < ε < 1 and p ∈ [1, 2], and fLp(0, 1), we can find fLp(0, 1) with mes{f ≠ f < ε whose nonzero Fourier–Walsh coefficients ck(f) are such that |ck(f)| = ak for k ∈ spec(f).  相似文献   

19.
Let G be a graph, and g, f: V (G) → Z+ with g(x) ≤ f(x) for each xV (G). We say that G admits all fractional (g, f)-factors if G contains an fractional r-factor for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for any xV (G). Let H be a subgraph of G. We say that G has all fractional (g, f)-factors excluding H if for every r: V (G) → Z+ with g(x) ≤ r(x) ≤ f(x) for all xV (G), G has a fractional r-factor F h such that E(H) ∩ E(F h ) = θ, where h: E(G) → [0, 1] is a function. In this paper, we show a characterization for the existence of all fractional (g, f)-factors excluding H and obtain two sufficient conditions for a graph to have all fractional (g, f)-factors excluding H.  相似文献   

20.
Let k be an algebraically closed field, and V be a vector space of dimension n over k. For a set ω = (\(\vec d\)(1), ..., \(\vec d\)(m)) of sequences of positive integers, denote by L ω the ample line bundle corresponding to the polarization on the product X = Π i=1 m Flag(V, \(\vec n\)(i)) of flag varieties of type \(\vec n\)(i) determined by ω. We study the SL(V)-linearization of the diagonal action of SL(V) on X with respect to L ω. We give a sufficient and necessary condition on ω such that X ss (L ω) ≠ \(\not 0\) (resp., X s (L ω) ≠ \(\not 0\)). As a consequence, we characterize the SL(V)-ample cone (for the diagonal action of SL(V) on X), which turns out to be a polyhedral convex cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号