首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper we deal with a Hamiltonian action of a reductive algebraic group G on an irreducible normal affine Poisson variety X. We study the quotient morphism \({\mu_{G,X}//G : X//G \rightarrow \mathfrak{g} //G}\) of the moment map \({\mu_{G,X} : X\rightarrow \mathfrak{g}}\) . We prove that for a wide class of Hamiltonian actions (including, for example, actions on generically symplectic varieties) all fibers of the morphism μ G,X //G have the same dimension. We also study the “Stein factorization” of μ G,X //G. Namely, let C G,X denote the spectrum of the integral closure of \({\mu_{G,X}^{*}(\mathbb{K}[\mathfrak{g}]^G)}\) in \({\mathbb{K}(X)^G}\) . We investigate the structure of the \({\mathfrak{g} //G}\) -scheme C G,X . Our results partially generalize those obtained by F. Knop for the actions on cotangent bundles and symplectic vector spaces.  相似文献   

2.
A set \(S\subseteq V\) is a paired-dominating set if every vertex in \(V{\setminus } S\) has at least one neighbor in S and the subgraph induced by S contains a perfect matching. The paired-domination number of a graph G, denoted by \(\gamma _{pr}(G)\), is the minimum cardinality of a paired-dominating set of G. A conjecture of Goddard and Henning says that if G is not the Petersen graph and is a connected graph of order n with minimum degree \(\delta (G)\ge 3\), then \(\gamma _{pr}(G)\le 4n/7\). In this paper, we confirm this conjecture for k-regular graphs with \(k\ge 4\).  相似文献   

3.
In earlier papers we studied direct limits \({(G,\,K) = \varinjlim\, (G_n,K_n)}\) of two types of Gelfand pairs. The first type was that in which the G n /K n are compact Riemannian symmetric spaces. The second type was that in which \({G_n = N_n\rtimes K_n}\) with N n nilpotent, in other words pairs (G n , K n ) for which G n /K n is a commutative nilmanifold. In each we worked out a method inspired by the Frobenius–Schur Orthogonality Relations to define isometric injections \({\zeta_{m,n}: L^2(G_n/K_n) \hookrightarrow L^2(G_m/K_m)}\) for mn and prove that the left regular representation of G on the Hilbert space direct limit \({L^2(G/K) := \varinjlim L^2(G_n/K_n)}\) is multiplicity-free. This left open questions concerning the nature of the elements of L 2(G/K). Here we define spaces \({\mathcal{A}(G_n/K_n)}\) of regular functions on G n /K n and injections \({\nu_{m,n} : \mathcal{A}(G_n/K_n) \to \mathcal{A}(G_m/K_m)}\) for mn related to restriction by \({\nu_{m,n}(f)|_{G_n/K_n} = f}\). Thus the direct limit \({\mathcal{A}(G/K) := \varinjlim \{\mathcal{A}(G_n/K_n), \nu_{m,n}\}}\) sits as a particular G-submodule of the much larger inverse limit \({\varprojlim \{\mathcal{A}(G_n/K_n), {\rm restriction}\}}\). Further, we define a pre Hilbert space structure on \({\mathcal{A}(G/K)}\) derived from that of L 2(G/K). This allows an interpretation of L 2(G/K) as the Hilbert space completion of the concretely defined function space \({\mathcal{A}(G/K)}\), and also defines a G-invariant inner product on \({\mathcal{A}(G/K)}\) for which the left regular representation of G is multiplicity-free.  相似文献   

4.
For a graph G, let S(G) be the Seidel matrix of G and \({\theta }_1(G),\ldots ,{\theta }_n(G)\) be the eigenvalues of S(G). The Seidel energy of G is defined as \(|{\theta }_1(G)|+\cdots +|{\theta }_n(G)|\). Willem Haemers conjectured that the Seidel energy of any graph with n vertices is at least \(2n-2\), the Seidel energy of the complete graph with n vertices. Motivated by this conjecture, we prove that for any \(\alpha \) with \(0<\alpha <2,|{\theta }_1(G)|^\alpha +\cdots +|{\theta }_n(G)|^\alpha \geqslant (n-1)^\alpha +n-1\) if and only if \(|\hbox {det}\,S(G)|\geqslant n-1\). This, in particular, implies the Haemers’ conjecture for all graphs G with \(|\hbox {det}\,S(G)|\geqslant n-1\). A computation on the fraction of graphs with \(|\hbox {det}\,S(G)|<n-1\) is reported. Motivated by that, we conjecture that almost all graphs G of order n satisfy \(|\hbox {det}\,S(G)|\geqslant n-1\). In connection with this conjecture, we note that almost all graphs of order n have a Seidel energy of order \(\Theta (n^{3/2})\). Finally, we prove that self-complementary graphs G of order \(n\equiv 1\pmod 4\) have \(\det S(G)=0\).  相似文献   

5.
The domination number γ(G) of a connected graph G of order n is bounded below by(n+2-e(G))/ 3 , where (G) denotes the maximum number of leaves in any spanning tree of G. We show that (n+2-e(G))/ 3 = γ(G) if and only if there exists a tree T ∈ T ( G) ∩ R such that n1(T ) = e(G), where n1(T ) denotes the number of leaves of T1, R denotes the family of all trees in which the distance between any two distinct leaves is congruent to 2 modulo 3, and T (G) denotes the set composed by the spanning trees of G. As a consequence of the study, we show that if (n+2-e(G))/ 3 = γ(G), then there exists a minimum dominating set in G whose induced subgraph is an independent set. Finally, we characterize all unicyclic graphs G for which equality (n+2-e(G))/ 3= γ(G) holds and we show that the length of the unique cycle of any unicyclic graph G with (n+2-e(G))/ 3= γ(G) belongs to {4} ∪ {3 , 6, 9, . . . }.  相似文献   

6.
Let \(\mathcal {L}\) be a \(\mathcal {J}\)-subspace lattice on a Banach space X over the real or complex field \(\mathbb {F}\) with dimX ≥ 3 and let n ≥ 2 be an integer. Suppose that dimK ≠ 2 for every \(K\in \mathcal {J}{(\mathcal L)}\) and \(L: \text {Alg}\, \mathcal {L}\rightarrow \text {Alg}\,\mathcal {L}\) is a linear map. It is shown that L satisfies \({\sum }_{i=1}^{n}p_{n} (A_{1}, \ldots , A_{i-1}, L(A_{i}), A_{i+1}, \ldots , A_{n})=0\) whenever p n (A 1,A 2,…,A n ) = 0 for \(A_{1},A_{2},\ldots ,A_{n}\in \text {Alg}\,\mathcal {L}\) if and only if for each \(K\in \mathcal {J}(\mathcal {L})\), there exists a bounded linear operator \(T_{K}\in \mathcal {B}(K)\), a scalar λ K and a linear functional \(h_{K}: \text {Alg}\,\mathcal {L}\rightarrow \mathbb {F}\) such that L(A)x = (T K A ? A T K + λ K A + h K (A)I)x for all xK and all \(A\in \text {Alg}\,\mathcal {L}\). Based on this result, a complete characterization of linear n-Lie derivations on \(\text {Alg}\,\mathcal {L}\) is obtained.  相似文献   

7.
Let G be a countable discrete infinite amenable group which acts continuously on a compact metric space X and let μ be an ergodic G-invariant Borel probability measure on X. For a fixed tempered F?lner sequence {Fn} in G with limn→+∞|Fn|/log n= ∞, we prove the following result:h_top~B(G_μ, {F_n}) = h_μ(X, G),where G_μ is the set of generic points for μ with respect to {F_n} and h_top~B(G_μ, {F_n}) is the Bowen topological entropy(along {F_n}) on G_μ. This generalizes the classical result of Bowen(1973).  相似文献   

8.
The minimal logarithmic signature conjecture states that in any finite simple group there are subsets A i , 1 ≤ ik such that the size |A i | of each A i is a prime or 4 and each element of the group has a unique expression as a product \({\prod_{i=1}^k x_i}\) of elements \({x_i \in A_i}\). The conjecture is known to be true for several families of simple groups. In this paper the conjecture is shown to be true for the groups \({\Omega^-_{2m}(q), \Omega^+_{2m}(q)}\), when q is even, by studying the action on suitable spreads in the corresponding projective spaces. It is also shown that the method can be used for the finite symplectic groups. The construction in fact gives cyclic minimal logarithmic signatures in which each A i is of the form \({\{y_i^j \ |\ 0 \leq j < |A_i|\}}\) for some element y i of order ≥ |A i |.  相似文献   

9.
Let G = (V, E) be a graph. A set \({S\subseteq V}\) is a restrained dominating set if every vertex in V ? S is adjacent to a vertex in S and to a vertex in V ? S. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is claw-free with minimum degree at least two and \({G\notin \{C_{4},C_{5},C_{7},C_{8},C_{11},C_{14},C_{17}\}}\) , then \({\gamma_{r}(G)\leq \frac{2n}{5}.}\)  相似文献   

10.
A set S of vertices is independent or stable in a graph G, and we write S ∈ Ind (G), if no two vertices from S are adjacent, and α(G) is the cardinality of an independent set of maximum size, while core(G) denotes the intersection of all maximum independent sets. G is called a König–Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. The number def (G) = | V(G) | ?2μ(G) is the deficiency of G. The number \({d(G)=\max\{\left\vert S\right\vert -\left\vert N(S)\right\vert :S\in\mathrm{Ind}(G)\}}\) is the critical difference of G. An independent set A is critical if \({\left\vert A\right\vert -\left\vert N(A)\right\vert =d(G)}\) , where N(S) is the neighborhood of S, and α c (G) denotes the maximum size of a critical independent set. Larson (Eur J Comb 32:294–300, 2011) demonstrated that G is a König–Egerváry graph if and only if there exists a maximum independent set that is also critical, i.e., α c (G) = α(G). In this paper we prove that: (i) \({d(G)=\left \vert \mathrm{core}(G) \right \vert -\left \vert N (\mathrm{core}(G))\right\vert =\alpha(G)-\mu(G)=def \left(G\right)}\) holds for every König–Egerváry graph G; (ii) G is König–Egerváry graph if and only if each maximum independent set of G is critical.  相似文献   

11.
Let {X, X_n; n ≥ 0} be a sequence of independent and identically distributed random variables with EX=0, and assume that EX~2I(|X| ≤ x) is slowly varying as x →∞, i.e., X is in the domain of attraction of the normal law. In this paper, a self-normalized law of the iterated logarithm for the geometrically weighted random series Σ~∞_(n=0)β~nX_n(0 β 1) is obtained, under some minimal conditions.  相似文献   

12.
For a finite group G, the set of all prime divisors of |G| is denoted by π(G). P. Shumyatsky introduced the following conjecture, which was included in the “Kourovka Notebook” as Question 17.125: a finite group G always contains a pair of conjugate elements a and b such that π(G) = π(〈a, b〉). Denote by \(\mathfrak{Y}\) the class of all finite groups G such that π(H) ≠ π(G) for every maximal subgroup H in G. Shumyatsky’s conjecture is equivalent to the following conjecture: every group from \(\mathfrak{Y}\) is generated by two conjugate elements. Let \(\mathfrak{V}\) be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that \(\mathfrak{V} \subseteq \mathfrak{Y}\). We prove that every group from \(\mathfrak{V}\) is generated by two conjugate elements. Thus, Shumyatsky’s conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatsky’s conjecture.  相似文献   

13.
The Shanks transformation is a powerful nonlinear extrapolation method that is used to accelerate the convergence of slowly converging, and even diverging, sequences {A n }. It generates a two-dimensional array of approximations \({A^{(j)}_n}\) to the limit or anti-limit of {A n } defined as solutions of the linear systems
$A_l=A^{(j)}_n +\sum^{n}_{k=1}\bar{\beta}_k(\Delta A_{l+k-1}),\ \ j\leq l\leq j+n,$
where \({\bar{\beta}_{k}}\) are additional unknowns. In this work, we study the convergence and stability properties of \({A^{(j)}_n}\) , as j → ∞ with n fixed, derived from general linear sequences {A n }, where \({{A_n \sim A+\sum^{m}_{k=1}\zeta_k^n\sum^\infty_{i=0} \beta_{ki}n^{\gamma_k-i}}}\) as n → ∞, where ζ k  ≠ 1 are distinct and |ζ 1| = ... = |ζ m | = θ, and γ k  ≠ 0, 1, 2, . . .. Here A is the limit or the anti-limit of {A n }. Such sequences arise, for example, as partial sums of Fourier series of functions that have finite jump discontinuities and/or algebraic branch singularities. We show that definitive results are obtained with those values of n for which the integer programming problems
$\begin{array}{ll}{\quad\quad\quad\quad\max\limits_{s_1,\ldots,s_m}\sum\limits_{k=1}^{m}\left[(\Re\gamma_k)s_k-s_k(s_k-1)\right],}\\ {{\rm subject\,to}\,\, s_1\geq0,\ldots,s_m\geq0\quad{\rm and}\quad \sum\limits_{k=1}^{m} s_k = n,}\end{array}$
have unique (integer) solutions for s 1, . . . , s m . A special case of our convergence result concerns the situation in which \({{\Re\gamma_1=\cdots=\Re\gamma_m=\alpha}}\) and n = mν with ν = 1, 2, . . . , for which the integer programming problems above have unique solutions, and it reads \({A^{(j)}_n-A=O(\theta^j\,j^{\alpha-2\nu})}\) as j → ∞. When compared with A j ? A = O(θ j j α ) as j → ∞, this result shows that the Shanks transformation is a true convergence acceleration method for the sequences considered. In addition, we show that it is stable for the case being studied, and we also quantify its stability properties. The results of this work are the first ones pertaining to the Shanks transformation on general linear sequences with m > 1.
  相似文献   

14.
Let a, b, r be nonnegative integers with \(1\leq{a}\leq{b}\) and \(r\geq2\). Let G be a graph of order n with \(n >\frac{(a+2b)(r(a+b)-2)}{b}\). In this paper, we prove that G is fractional ID-[a, b]-factor-critical if \(\delta(G)\geq\frac{bn}{a+2b}+a(r-1)\) and \(\mid N_{G}(x_{1}) \cup N_{G}(x_{2}) \cup \cdotp \cdotp \cdotp \cup N_{G}(x_{r})\mid\geq\frac{(a+b)n}{a+2b}\) for any independent subset {x1, x2, · · ·, xr} in G. It is a generalization of Zhou et al.’s previous result [Discussiones Mathematicae Graph Theory, 36: 409–418 (2016)] in which r = 2 is discussed. Furthermore, we show that this result is best possible in some sense.  相似文献   

15.
The induced path number \(\rho (G)\) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. A product Nordhaus–Gaddum-type result is a bound on the product of a parameter of a graph and its complement. Hattingh et al. (Util Math 94:275–285, 2014) showed that if G is a graph of order n, then \(\lceil \frac{n}{4} \rceil \le \rho (G) \rho (\overline{G}) \le n \lceil \frac{n}{2} \rceil \), where these bounds are best possible. It was also noted that the upper bound is achieved when either G or \(\overline{G}\) is a graph consisting of n isolated vertices. In this paper, we determine best possible upper and lower bounds for \(\rho (G) \rho (\overline{G})\) when either both G and \(\overline{G}\) are connected or neither G nor \(\overline{G}\) has isolated vertices.  相似文献   

16.
A subset {g 1,..., g d } of a finite group G invariably generates \(\left\{ {g_1^{{x_1}}, \ldots ,g_d^{{x_d}}} \right\}\) generates G for every choice of x i G. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. The first author recently showed that \(C\left( G \right) \leqslant \beta \sqrt {\left| G \right|} \) for some absolute constant β. In this paper we show that, when G is soluble, then β is at most 5/3. We also show that this is best possible. Furthermore, we show that, in general, for each ε > 0 there exists a constant c ε such that \(C\left( G \right) \leqslant \left( {1 + \in } \right)\sqrt {\left| G \right|} + {c_ \in }\).  相似文献   

17.
Suppose that \(G =\mathbb{S}^1\) acts freely on a finitistic space X whose (mod p) cohomology ring is isomorphic to that of a lens space \(L^{2m-1}(p;q_1,\ldots,q_m)\) or \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). The mod p index of the action is defined to be the largest integer n such that α n ?≠?0, where \(\alpha \,\epsilon\, H^2(X/G;\mathbb{Z}_p)\) is the nonzero characteristic class of the \(\mathbb{S}^1\)-bundle \(\mathbb{S}^1\hookrightarrow X\rightarrow X/G\). We show that the mod p index of a free action of G on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\) is p???1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free G-action on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). It is note worthy that the mod p index for free G-actions on the cohomology lens space is not defined.  相似文献   

18.
The maximum number vertices of a graph G inducing a 2-regular subgraph of G is denoted by \(c_\mathrm{ind}(G)\). We prove that if G is an r-regular graph of order n, then \(c_\mathrm{ind}(G) \ge \frac{n}{2(r-1)} + \frac{1}{(r-1)(r-2)}\) and we prove that if G is a cubic, claw-free graph on order n, then \(c_\mathrm{ind}(G) > \frac{13}{20}n\) and this bound is asymptotically best possible.  相似文献   

19.
Given an abelian group G of order n, and a finite non-empty subset A of integers, the Davenport constant of G with weight A, denoted by D A (G), is defined to be the least positive integer t such that, for every sequence (x 1,..., x t ) with x i ?∈?G, there exists a non-empty subsequence \((x_{j_1},\ldots, x_{j_l})\) and a i ?∈?A such that \(\sum_{i=1}^{l}a_ix_{j_i} = 0\). Similarly, for an abelian group G of order n, E A (G) is defined to be the least positive integer t such that every sequence over G of length t contains a subsequence \((x_{j_1} ,\ldots, x_{j_n})\) such that \(\sum_{i=1}^{n}a_ix_{j_i} = 0\), for some a i ?∈?A. When G is of order n, one considers A to be a non-empty subset of {1,..., n???1 }. If G is the cyclic group \({\Bbb Z}/n{\Bbb Z}\), we denote E A (G) and D A (G) by E A (n) and D A (n) respectively.In this note, we extend some results of Adhikari et al (Integers 8 (2008) Article A52) and determine bounds for \(D_{R_n}(n)\) and \(E_{R_n}(n)\), where \(R_n = \{x^2 : x \in (\mathbb{Z}/n\mathbb{ Z})^*\}\). We follow some lines of argument from Adhikari et al (Integers 8 (2008) Article A52) and use a recent result of Yuan and Zeng (European J. Combinatorics 31 (2010) 677–680), a theorem due to Chowla (Proc. Indian Acad. Sci. (Math. Sci.) 2 (1935) 242–243) and Kneser’s theorem (Math. Z. 58 (1953) 459–484; 66 (1956) 88–110; 61 (1955) 429–434).  相似文献   

20.
Let G be a finite group, A a finite abelian group. Each homomorphism \({\varphi:G\rightarrow A\wr S_n}\) induces a homomorphism \({\overline{\varphi}:G\rightarrow A}\) in a natural way. We show that as \({\varphi}\) is chosen randomly, then the distribution of \({\overline{\varphi}}\) is close to uniform. As application we prove a conjecture of T. Müller on the number of homomorphisms from a finite group into Weyl groups of type D n .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号