首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

In this study, the performance of modified adsorbents obtained from activated carbon for the adsorption of thorium(IV) ions from aqueous media was investigated. The analytical and spectroscopic methods such as FT-IR, BET, SEM and UV–Vis were used to examine the properties of the modified materials. According to the analysis results, the both adsorbents had large surface areas after modification. Then, temperature, pH, mixing time and solution concentration parameters were observed to determine optimum thorium adsorption conditions on modified materials. The obtained results from the experiments were applied different three kinetic models and adsorption isotherms and thermodynamic parameters were calculated and then all of the results were interpreted. The adsorption process for both adsorption systems was observed to be compatible with the pseudo-second-order kinetic model. The adsorption equilibrium data were best described by the Langmuir model for modified adsorbent with KMnO4 and by the Freundlich model for modified adsorbent with NaOH. Furthermore, the calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the both adsorption processes were endothermic and spontaneous. The data show that modified adsorbents can be used as influential and low-cost adsorbents to remove thorium ion. Modified new adsorbents were highly selective for thorium ion in competitive adsorption studies.

  相似文献   

2.
In present study adsorption capacity of waste materials of Daucus carota plant (carrot stem powder: CSP and carrot leaves powder: CLP) was explored for the removal of methylene blue (MB) malachite green (MG) dye from water. The morphology and functional groups present were investigated by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The operating variables studied were pH, adsorbent dose, ionic strength, initial dye concentration, contact time and temperature. Equilibrium data were analysed using Langmuir and Freundlich isotherm models and monolayer adsorption capacity of adsorbents were calculated. Kinetic data were studied using pseudo-first and pseudo-second order kinetic models and the mechanism of adsorption was described by intraparticle diffusion model.Various thermodynamic parameters such as enthalpy of adsorption ΔH°, free energy change ΔG° and entropy ΔS° were estimated. Negative value of ΔH° and negative values of ΔG° showed that the adsorption process was exothermic and spontaneous. Negative value of entropy ΔS° showed the decreased randomness at the solid–liquid interface during the adsorption of MB and MG onto CSP and CLP.  相似文献   

3.
The adsorption of methylene blue (MB) dye from aqueous solution onto a cashew nut shell (CNS) was investigated as a function of parameters such as solution pH, CNS dose, contact time, initial MB dye concentration and temperature. The CNS was shown to be effective for the quantitative removal of MB dye, and the equilibrium was reached in 60 min. The experimental data were analysed by two-parameter isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models) using nonlinear regression analysis. The characteristic parameters for each isotherm and the related correlation coefficients were determined. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, the sorption process was found to be spontaneous and exothermic. Pseudo-first-order, pseudo-second-order and Elovich kinetic models were used to analyze the adsorption process. The results of the kinetic study suggest that the adsorption of MB dye matches the pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorption process was found to be controlled by both surface and pore diffusion. Analysis of adsorption data using a Boyd kinetic plot confirmed that the external mass transfer is a rate determining step in the sorption process. A single-stage batch adsorber was designed for different CNS doses to effluent volume ratios using the Freundlich equation. The results indicated that the CNS could be used effectively to adsorb MB dye from aqueous solutions.  相似文献   

4.
In this study, an amidoximated chelating ion exchange resin was prepared by poly-acrylonitrile (PAN) grafted potato starch. The adsorbent characterizations such as specific surface area, pore volume, average pore radius, and Fourier transform infrared (FTIR) spectrum of the resin were measured. The effects of pH, adsorbent dosage, contact time, initial concentration of thorium ion, and temperature on adsorption of thorium ion from aqueous solutions were investigated. Four isotherm models including Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin were applied to analyze the equilibrium isotherm data. The results showed that Langmuir and Temkin models had a good agreement with experimental data. The maximum capacity of the adsorbent using the Langmuir isotherm model was 227.27 mg · g?1. The kinetic models like pseudo-first-order, pseudo-second-order, Elovich, and intraparticle were examined to describe the adsorption process. The kinetics of the adsorption process was found to follow the pseudo-second-order kinetic model. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were also calculated using equilibrium constant values at various temperatures (25, 35, 45, 55°C) and the positive value for ΔH° showed an endothermic adsorption process. The study suggests that the prepared adsorbent has promising potential for the removal of thorium from wastewaters.   相似文献   

5.
Removal of copper (II) from aqueous solution of CuCl2·2H2O by different adsorbents, namely, sissoo sawdust, activated carbon, and fly ash were investigated. Adsorption of copper (II) on sissoo sawdust, activated carbon, and fly ash has been studied using batch techniques. Kinetic and isotherm studies were determined as a function of the solution pH, temperature, contact time, adsorbent dosage, and initial adsorbate concentration. Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The maximum adsorption capacities for copper (II) on sissoo sawdust, activated carbon, and fly ash adsorbents at 30, 40, and 50°C temperatures were found to be 263.2, 166.6, and 142.8; 125.0, 88.49, and 72.46; 69.93, 181.8, and 111.1 mg/g, respectively. The thermodynamics of copper (II) adsorption on sissoo sawdust, activated carbon, and fly ash indicates its spontaneous and endothermic nature. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model.  相似文献   

6.
Adsorption of Cu(II) from aqueous solution on a novel adsorbent, silicon carbide ash (SiC ash), was studied using batch technique. The adsorbent was prepared by pyrolysis of Egyptian rice waste (rice straw and rice husk) and was characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and surface area analysis by Brunauer-Emmett-Teller (BET) Theory. The influence of pH, contact time, initial Cu(II) concentration, adsorbent dose, agitation speed, and temperature was investigated. Adsorption kinetics was analyzed using the pseudo-first-order, the pseudo-second-order, and intraparticular diffusion model. The adsorption process was found to follow a pseudo-second-order rate mechanism. The adsorption isotherm data could be well described by the Langmuir and Freundlich than the Dubinin–Radushkevich adsorption model. The adsorption capacity of 22.06 mg g?1for SiC ash was obtained at pH = 5 and temperature of 298 K. Thermodynamic parameters, change in the free energy (ΔG°), the enthalpy (ΔH°), and the entropy (ΔS°), were also calculated. The overall adsorption process was exothermic, spontaneous in nature, and proceeds with decreased randomness as the entropy is negative value. Adsorption process was successfully applied to remove Cu(II) from an industrial wastewater sample.  相似文献   

7.
Methylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g?1, higher than those of many other adsorbents studied in the literature. This superior adsorption capacity, along with the ready availability of Urtica, render this adsorbent potentially suitable for practical applications.  相似文献   

8.
《印度化学会志》2023,100(4):100963
The objective of the present study is to utilize fly ash cenosphere to remove methylene blue (MB) from the water streams. Nickel oxide is a typical semiconductor used as proficient adsorbent material for degradation of dye with environment friendly applications due to its excellent chemical stability and high catalytic activity. The chitosan cenosphere buoyant composite coated with NiO was synthesized with hydrothermal grafting reaction using silane coupling agent and epichlorohydrin as a cross-linking reagent. The batch adsorption experiments were carried out with a cationic dye, methylene blue as a representative organic pollutant to investigate the adsorptive capabilities of the composite as adsorbent. The influence of pH (2-12), initial concentration of dye (50–200 mg/L), temperature (37–47 °C) and contact time (0–24 h) were taken as parameters in the study. On the relative elimination of MB, the effect of time and temperature were investigated. The adsorption kinetics for MB was correlated and found to observe the pseudo-second order kinetic model, whereas the equilibrium adsorption isotherm follows the Langmuir model (R2 > 0.99). The results indicate that the floating fly ash cenosphere coated with NiO proved to be more responsive for enhanced degradation of methylene blue.  相似文献   

9.
The effect of temperature of activation on bone charcoal, used as adsorbent for the removal of Patent Blue VF from water solutions was studied. The adsorbent was characterized by FTIR, XRD, SEM and EDS. The kinetic of adsorption of dye was carried out at 10 °C and 45 °C. Carbonization temperature (600–1000 °C) of the adsorbent has significant effect on the removal of dye from water solutions. The first order kinetic, Elovich, Bangham, parabolic diffusion and power function equations were found to fit the kinetic data. Activation energies of adsorption (Δ≠) have higher values for the charcoal activated at high temperatures and the other thermodynamic parameters like ΔH≠, ΔS≠ and ΔG≠ were also found.  相似文献   

10.
Wastes must be managed properly to avoid negative impacts that may result. Open burning of waste causes air pollution which is particularly hazardous. Flies, mosquitoes and rats are major problems in poorly managed surroundings. Uncollected wastes often cause unsanitary conditions and hinder the efforts to keep streets and open spaces in a clean and attractive condition. During final disposal methane is generated, it is much more effective than carbon dioxide as a greenhouse gas, leading to climate change. Therefore, this study describes the possible valorization of two waste streams into activated carbon (AC) with added value due to copyrolysis. High efficiency activated carbon was prepared by the copyrolysis of palm stem waste and lubricating oil waste. The effects of the lubricating oil waste to palm stem ratio and the carbonization temperature on the yield and adsorption capacity of the activated carbon were investigated. The results indicated that the carbon yield depended strongly on both the carbonization temperature and the lubricating oil to palm stem ratio. The efficiency of the adsorption of methylene blue (MB) onto the prepared carbons increased when the lubricating oil to palm stem ratio increased due to synergistic effect. The effects of pH, contact time, and the initial adsorbate concentration on the adsorption of methylene blue were investigated. The maximum adsorption capacity (128.89 mg/g) of MB occurred at pH 8.0. The MB adsorption kinetics were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results indicated that the adsorption of MB onto activated carbon is best described using a second order kinetic model. Adsorption data are well fitted with Langmuir and Freundlich isotherms. The thermodynamic parameters; ΔG°, ΔH° and ΔS° indicate that the adsorption is spontaneous and endothermic.  相似文献   

11.
A commercial synthetic zeolite (Na-ZSM-5) was modified with an organic surfactant, HDTMA-Br. Then both unmodified and modified zeolite (SMZ-100) were tested to adsorb Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from water solution. Adsorption tests were done in batch conditions at the ambient temperature (20?°C) and pressure. Adsorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms and field emission scanning electron microscopy (FE-SEM) and characterization results proved the existence of surfactant on the surface of the adsorbent. In all cases, the modified zeolite sample, because of increasing the hydrophobicity of its surface, exhibited higher adsorption capacity in comparison with unmodified zeolite. Also, for each adsorbent, the adsorption capacity follows the order: E?>?X?>?T?>?B. In equilibrium experiments, Langmuir isotherm model fitted the equilibrium data better than the Freundlich model. In kinetic experiments, the pseudo-second order model described the kinetic data better than the other models.  相似文献   

12.
The adsorption behavior of radiocobalt by Mg2Al layered double hydroxide (Mg2Al LDH) was studied as a function of contact time, pH, ionic strength, foreign ions, FA and temperature under ambient conditions. The results showed that the kinetic adsorption could be described by a pseudo-second order model very well. The adsorption of Co(II) on Mg2Al LDH was strongly dependent on pH and ionic strength. The presence of FA enhanced the adsorption of Co(II) on Mg2Al LDH at low pH, whereas reduced Co(II) adsorption at high pH. The Langmuir model fitted the adsorption isotherms of Co(II) better than the Freundlich and D–R model at three different temperatures of 303, 323 and 343 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent adsorption isotherms indicated that the adsorption process of Co(II) on Mg2Al LDH was endothermic and spontaneous. The results show that Mg2Al LDH is a promising material for the preconcentration and separation of pollutants from large volumes of aqueous solutions.  相似文献   

13.
Abstract

In this study the effect of the dose and particle size of the adsorbent, initial dye concentration, initial pH, contact time and temperature were investigated for the removal of by means of fly ash (FA) methylene blue (MB) from an aqueous solution. The FA dose was found to be 2.0?g and the under 270 mesh sized particles were found to be effective particles for adsorption. The adsorption process reached its maximum value at 0.5?mg/L dye concentration and attained equilibrium within 10?minutes. The adsorption isotherm was found to follow the Langmuir model. The estimated adsorption free energy (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) for the adsorption process were ?37.77?kJ mol?1, ?13.44?kJ mol?1 and 122 J mol?1 K?1 respectively at 298 K. The maximum adsorption capacity is 0,12?mg g?1 at 298 K and 0,07?mg g?1 at 398 K. The adsorption process was exothermic, feasible and spontaneous. The positive value of ΔSo shows the affinity of FA for MB while the low value of ΔGo suggests a physical adsorption process.  相似文献   

14.
The present study describes the synthesis and characterization of titania-silica mixed imidazolium based ionic liquid (Ti-Si-IL) as well as evaluation of its adsorption behavior towards the 2,4-dinitrophenol (2,4-DNP) and 2,4,6-trichlorophenol (2,4,6-TCP). Synthesized Ti-Si-IL adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), BET surface area Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA) and elemental analysis (CHN). The adsorption of 2,4-DNP and 2,4,6-TCP on Ti-Si-IL was investigated systematically by evaluating the effects of adsorbent dosage, initial pH, contact time and temperature. Satisfactory adsorption 95% and 65% for 2,4-DNP and 2,4,6-TCP was observed at pH 4 and 6, respectively. The kinetic results for 2,4-DNP and 2,4,6-TCP on Ti-Si-IL indicated that the kinetic data follows pseudo-second-order model (R2 = 0.9985 and 0.9750, respectively). Adsorption isotherms were fitted well by the Langmuir model for 2,4-DNP (qm = 44.64 mg g?1 at 318 K) and Freundlich model for 2,4,6-TCP (KF = 0.63 mg g?1 at 318 K). The +ΔH° and -ΔG° values demonstrated that the adsorption of 2,4-DNP was endothermic and spontaneous in nature. While the -ΔH° and +ΔG° values for 2,4,6-TCP adsorption demonstrated exothermic and comparatively nonspontaneous. During the removal process, the role of different functional groups, cyclic structure was monitored and found that the ionic property as well as π-π interactions of host molecules played important role in the extent of adsorption.  相似文献   

15.
The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H2SO4 modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin–Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (RL) indicated that chitosan–H2SO4 was favorable for Pb(II) and Cu(II) adsorption.  相似文献   

16.
There are approximately 82 million of tons asphaltites reserves in ?irnak, East Anatolia of Turkey. The present study was investigated to employ ashes of S?rnak BCW (burned coal waste) as an ion exchange in removal of important toxic metal, Lead (Pb), in high yields by adsorption. The ion exchange characteristics of lead onto BCW from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, initial metal ion concentration, contact time and temperature of solution. For the adsorption of lead, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Thermodynamic functions, the change of free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) of adsorption were also calculated for lead. These parameters showed that the adsorption was feasible, spontaneous and exothermic at 293–333 K. Experimental data were also evaluated in terms of kinetic characteristics of adsorption. The batch kinetic data were correlated to the pseudo-first order and pseudo-second order models. The data fitted better to the pseudo-second order equation. The activation energy of systems was determined. Experimental data have shown that BCW that was used in unmodified form; as low cost, readily available ion exchange; can be used for removal of lead from industrial waste waters. Analysis was determined using Flame Atomic Absorption Spectrometry (FAAS).  相似文献   

17.
Present study deals with the adsorption of phenol on carbon rich bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse-fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of phenol. C0 varied from 75 to 300 mg/l for the adsorption isotherm studies and the effect of temperature on adsorption. Optimum conditions for phenol removal were found to be pH0  6.5, adsorbent dose ≈10 g/l of solution and equilibrium time ≈5 h. Adsorption of phenol followed pseudo-second order kinetics with the initial sorption rate for adsorption on ACL being the highest followed by those on BFA and ACC. The effective diffusion coefficient of phenol is of the order of 10−10 m2/s. Equilibrium isotherms for the adsorption of phenol on BFA, ACC and ACL were analysed by Freundlich, Langmuir, Temkin, Redlich–Peterson, Radke–Prausnitz and Toth isotherm models using non-linear regression technique. Redlich–Peterson isotherm was found to best represent the data for phenol adsorption on all the adsorbents. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for phenol adsorption on BFA were estimated as 1.8 MJ/kg K and 0.5 MJ/kg, respectively. The high negative value of change in Gibbs free energy (ΔG°) indicates the feasible and spontaneous adsorption of phenol on BFA. The values of isosteric heat of adsorption varied with the surface loading of phenol.  相似文献   

18.
Magnetic biochar, as an adsorbent, was synthesized by a single step method, where iron salt was directly mixed with pinewood sawdust by chemical co-precipitation and subsequently pyrolyzed at 700°C for Cr (VI) removal from aqueous solution. The effects of some important parameters including adsorbent dosage (0.4–2.8?g/L), pH (1–10) of the solution, contact time (0–1440 minutes), initial concentration (30–120?mg/L), and temperature (20–40°C) were investigated in batch experiments. Both pre- and post-adsorbents were characterized by SEM-EDX and XPS to investigate the adsorption mechanism. The maximum adsorption capacity of the tested magnetic biochar under the certain experimental conditions determined as optimal was 42.7?mg/g for Cr (VI). The adsorption data were proved to be suitable for the pseudo-second order model for kinetics and the Langmuir model for isotherms with correlation R2?=?0.9996 andR2?>?0.9980, respectively, after fitting with four kinetic models (pseudo-first order, pseudo-second order, W-M model, and Elovich) and three isotherm models (Langmuir, Freundlich, and Temkin). The characteristic analyses further verified that the efficient particle was a mixture of iron oxides in essence, and it had a strong effect on the spontaneous and endothermic adsorption process.  相似文献   

19.
This study investigates the adsorption of Congo red (CR) dye onto corn cob based activated carbon (CCAC) in the batch process. The activated carbon was characterized using FTIR, SEM, and EDX techniques, respectively. The effect of operational parameters such as the initial dye concentration (10–50?mg/L), contact time (5–160 minutes), and solution temperature (30–50°C) were studied. The amount of the CR dye adsorbed was found to increase as these operational parameters increased. Kinetic data for CR dye adsorption onto CCAC were best represented by the pseudo second-order kinetic model. Four different isotherms namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were used to test the adsorption data. It fitted the Langmuir isotherm model most. Thermodynamic parameters such as ΔH0, ΔS0, and ΔG0 were evaluated. The adsorption process was found to be exothermic and spontaneous. The study shows that CCAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.  相似文献   

20.
In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5gL(-1)), and initial MB concentration (5-60mgL(-1)). The best conditions were achieved at pH 7 when using 0.1gL(-1) MSN(AP) and 60mgL(-1)MB to give a maximum monolayer adsorption capacity of 500.1mgg(-1) at 303K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号