首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The limiting partial molar volumes of solutes and excess molar volumes of their mixtures with nonpolar solvents are calculated on the basis of precise (error ≤ 5·10?6 g·cm?3) densitometric measurements for dilute solutions of oleic, linoleic, and linolenic acids in tetrachloromethane at 298.15 K. It is found that self-association processes of the components of the mixtures play the key role in dissolution effects of fatty acids in CCl4. As the number of C=C double bonds in the acid molecule increases, acid desolvation becomes less pronounced and is accompanied by compression (reduction of volume) of the structural packing of the solvate complex formed due to the strengthening interaction of the acid with tetrachloromethane.  相似文献   

2.
比较峰面积归一化法与标准曲线法两种方法分析植物油中脂肪酸百分比含量的差异。利用气相色谱-质谱联用仪(GC-MS)检测10种市售食用植物油中的8种主要脂肪酸,峰面积归一化法和标准曲线法计算脂肪酸的百分比含量。结果表明,标准曲线法与峰面积归一化法相比,肉豆蔻酸、棕榈酸、十七烷酸、硬脂酸和棕榈油酸所占的百分比升高,而油酸、亚油酸和亚麻酸比例降低;饱和脂肪酸比例升高,不饱和脂肪酸百分比降低。利用峰面积归一化法计算植物油中脂肪酸百分比时,降低了饱和脂肪酸比例,升高了不饱和脂肪酸比例,可能对健康有潜在的不利影响。建议使用标准曲线法计算不同植物油中脂肪酸的百分比。  相似文献   

3.
Thermogravimetry technique is useful to determine the thermal stability of vegetable oils. In this paper some vegetable oils obtained from brazilian Cerrado native plants were studied based on their high oleic acid content. Amburana, baru and pequi pulp oils presented higher yield of extraction compared to soybean oil. The thermal stability of oils in nitrogen was very close hence their fatty acid composition was very similar. Amburana and baru oils have major amount of unsaturated fatty acids, especially linoleic acid and pequi pulp oil has the highest short chain fatty acid content which can explain its lowest thermal stability in synthetic air.  相似文献   

4.
High-precision vibration densimetry was used to measure (with an error of less than 5 × 10?6 g/cm3) the density of dilute solutions (0≤ x 2 ≤ 0.01 mole fractions) of oleic, linoleic, and linolenic acids in cyclohexane and benzene at 298.15 K. The limiting $\bar V_2^\infty $ and excess V 2 E, ∞ partial molar volumes of these C18: n fatty acids in the indicated solvents were calculated. Benzene was demonstrated to selectviely influence the volumetric effects of dissolution (V 2 E, ∞ ) of the linoleic (n C=C= 2) and linolenic (n C=C = 3) polyunsaturated acids.  相似文献   

5.
Vapor–liquid equilibria were measured for binary systems including carbon dioxide and free fatty acids such as oleic and linoleic acid, triglycerides as triolein or vegetable oils as sunflower oil, and modelled by the Group Contribution Equation of State (GC-EoS). Binary group parameters used in the calculation and prediction of CO2–triglycerides systems were obtained from the literature but in the case of CO2-free fatty acids, binary group parameters were adjusted through a parameterization strategy. At the end, a unique set of parameters could be established to model systems of vegetable oils at high pressures in the presence of CO2. Moreover, a strategy to calculate the two-phase region in a ternary diagram was also studied. The good correspondence between theoretical and experimental results suggests that the strategy and the set of binary group parameters proposed in this work can be reliable predictive tools for using GC-EoS to describe systems involving vegetable oils with a composition based mainly in free fatty acids and triglycerides, such as those which can be encountered, for example, in oil deacidification processes using supercritical CO2.  相似文献   

6.
The kernel oils of Quercus robur and Quercus cerris were obtained by Soxhlet extraction using petroleum ether. Oil yields were found to be 5.2–5.6% and 4.3–4.8% for Q. robur and Q. cerris kernel, respectively (expressed in g per 100 g of dried plant material). The physical and chemical constants, unsaponifiable matter and total fatty acids were determined. The total fatty acid composition of oils was determined by GC in the methyl ester form. Considering the composition and content of fatty acids, the examined kernel oils were very similar. Seven fatty acid components were identified in both oils: palmitic, stearic, arachidic, palmitoleic, oleic, linoleic, and -linolenic. In Q. robur and Q. cerris kernel oils the principal acids were oleic (44.3% and 43.0%, respectively) and linoleic (37.2% and 32.6%, respectively), followed by a significant amount of palmitic acid.Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 347–348, September–October, 2004.  相似文献   

7.
The seed oils of Cistus laurifolius, C. salviifolius, and C. creticus were investigated for their fatty acids by employing capillary GC and capillary GC-MS. The results of this study indicated that palmitic, linoleic, linolenic, oleic, stearic, and behenic acids were found in all of these three seed oils of Turkish origin. In addition, an important polyunsaturated fatty acid, linoleic acid, was the major fatty acid in all of these oil samples.Published in Khimiya Prirodnikh Soedinenii in No. 6, pp. 433–434, November–December.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

8.
A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils, and, when fully validated by comparison with standard analytical methodologies, should provide a relatively fast quantitative measurement of fatty acid mixtures and/or soap formulations that contain saturated and unsaturated hydrocarbon moieties.  相似文献   

9.
Densities of solutions of oleic, linoleic, and linolenic acids in n-hexane and n-heptane were measured using a vibrating-tube densimeter at 298.15 K in a concentration range of 0–0.012 molar fractions of solute. The measurement error does not exceed ±5·10−6 g cm−3. The limiting partial molar volumes of fatty acids of the studied series in n-hexane and n-heptane and the excess volume properties of binary mixtures were calculated. On going from oleic to linolenic acid, the number of double bonds (>C=C<) in a solute molecule increases, the hydrocarbon chain length in a solvent molecule decreases, and compactness of the structure packing of the resulting solution increases. This is caused, as a whole, by the enhancement of the n-alkane—acid intermolecular interaction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 643–647, April, 2006.  相似文献   

10.
In the present study, the profiling of 17 fatty acids (FAs) in avocado seed and pulp was investigated. The fatty acids were extracted with vortex-assisted extraction, methyl esterified and finally preconcentrated by dispersive liquid–liquid microextraction. The preconcentrated fatty acid methyl esters (FAMEs) were analyzed using gas chromatography–mass spectrometry (GC–MS) to obtain qualitative and quantitative information. The GC–MS data were analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method to overcome general chromatographic problems such as overlapped peaks, background interference and peak shifts. The calibration data were prepared using pure analytical information obtained by MCR-ALS. The linear dynamic ranges and regression coefficients (R 2) for FAMEs were in the range of 0.19–65 mg L?1 and 0.990–0.999, respectively. The relative standard deviation (RSD%) for determination of FAs in avocado seed and pulp was 0.17–8.84 and 0.64–17.93, respectively. The main FAs in the avocado pulp were: oleic acid (74.25 g Kg?1), linoleic acid (26.87 g Kg?1), palmitic acid (26.02 g Kg?1), palmitoleic acid (1.22 g Kg?1) and stearic acid (0.05 g Kg?1). And, the main FAs in the avocado seed were: linoleic acid (1.09 g Kg?1), palmitic acid (0.47 g Kg?1), oleic acid (0.33 g Kg?1), linolenic acid (0.12 g Kg?1), and palmitoleic acid (0.04 g Kg?1).  相似文献   

11.
Two sets of terpolymers, polymer A and polymer B consisting of almost same level of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) component at 0.635 ± 0.005 m and varying dodecyl methacrylate (DoDMAc) and monomethoxy poly(ethylene glycol) acrylate (PEGAc) components have been designed. Polymer A, consisting of less C12 component, has been shown to promote intermolecular aggregated structures wherein C12 domains exhibit compact packing characteristics. It is demonstrated that in polymer B, AMPS segments are predominantly present as ionic clusters contributing to a high pKa at about 9.50 for a low α of 0.20. From the results of interfacial adsorption estimations at air/solution and water/hexane interface, it is shown that open coil structures provided under high pH (>9.0) conditions promote efficiency of adsorption. This is shown from higher surface excess concentration (Γ) and lower interfacial area (a) estimated using Gibbs adsorption isotherm equation. For example, at water/hexane interface, polymer A exhibits Γ of 1.20 × 10?3 moles/1000 m2 at pH 3.2 and 1.97 × 10?3 moles/1000 m2 at pH 10.0. Significantly, in case of polymer B consisting of ionic clusters of AMPS, adsorption at the liquid/liquid interface is more efficient in comparison to polymer A at all pH. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 3257–3271, 2008  相似文献   

12.
Herein we report a reversed‐phase high‐performance liquid chromatography tandem mass spectrometry (RP‐HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X]+ ions (X = NH4, Li, Na or Ag) was studied on a quadrupole‐time‐of‐flight (Q‐TOF) mass spectrometer under low‐energy collision‐induced dissociation (CID) conditions. Mass spectra that were dependent on the X+ ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'‐type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X]+ adducts, the loss of the fatty acid in the outer positions (sn‐1 or sn‐3) was favored over the loss in the central position (sn‐2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI‐MS/MS of [M + NH4]+ adducts. The only exceptions were the [M + Ag]+ adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na]+ adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn‐1 or sn‐3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn‐2 position. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

13.
Fast-atom-bombardment mass spectrometry (FABMS) is used for the semiquantitative determination of the fatty acids of complex lipids directly from intact algal cells, crude algal lipid extracts, and vegetable oils. Carboxylate ions, RCOO?, corresponding to the fatty acid moieties of the complex lipids are detected. The relative abundances of the carboxylate fatty acid ions in the FAB mass spectra agreed with the relative percentages found by gas chromatography of the fatty acid methyl esters derived from the extracted lipids. Chemical ionization/fast-atom-bombardment mass spectrometry (CI/FABMS) is discussed with respect to enhancing the molecular ions of the fatty acids and triacylglycerols from these materials. The use of FABMS requires little sample preparation, and FABMS enables rapid fatty acid screening, directly from crude biological materials.  相似文献   

14.
Assignment of 13C nuclear magnetic resonance (NMR) spectra of major fatty acid components of South African produced vegetable oils was attempted using a method in which the vegetable oil was spiked with a standard triacylglycerol. This proved to be inadequate and therefore a new rapid and potentially generic graphical linear correlation method is proposed for assignment of the 13C NMR spectra of major fatty acid components of apricot kernel, avocado pear, grapeseed, macadamia nut, mango kernel and marula vegetable oils. In this graphical correlation method, chemical shifts of fatty acids present in a known standard triacylglycerol is plotted against the corresponding chemical shifts of fatty acids present in the vegetable oils. This new approach (under carefully defined conditions and concentrations) was found especially useful for spectrally crowded regions where significant peak overlap occurs and was validated with the well‐known 13C NMR spectrum of olive oil which has been extensively reported in the literature. In this way, a full assignment of the 13C{1H} NMR spectra of the vegetable oils, as well as tripalmitolein was readily achieved and the resonances belonging to the palmitoleic acid component of the triacylglycerols in the case of macadamia nut and avocado pear oil resonances were also assigned for the first time in the 13C NMR spectra of these oils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The present study was designed to determine the fatty acid composition and phytosterol contents of Turkish native olive cultivars, namely Kilis Yağlık and Nizip Yağlık cv. In this context, olive fruits from 34 locations were sampled and then screened for their components in comparison. Fifteen different fatty acids were found in both olive oils. In the order of abundance, the most important ones were oleic acid (18:1) > palmitic acid (16:0) > linoleic acid (18:2) > stearic acid (18:0). Significant differences were observed in the contents of oleic acid (18:1), palmitic acid (16:0), linoleic acid (18:2) but not for stearic acid content in comparison both oils (p < 0.01). There were significant differences in terms of unsaturated fatty acids, saturated fatty acids and polyunsaturated fatty acids (p < 0.01). The seven phytosterols – cholesterol, campesterol, stigmasterol, β ‐sitosterol, Δ‐5‐avenasterol, Δ‐7‐stigmastenol and Δ‐7‐avenasterol – were studied in both oil sources. The predominant sterols were β ‐sitosterol, Δ5‐avenasterol and campesterol in the samples analysed. However, no significant differences were found in the levels of the phytosterols between the two olive cultivars.  相似文献   

16.
ABSTRACT

The coagulation concentrations of Na+, Ba2+, and La3+ in the absence of SDS were analyzed in terms of the DLVO theory. The Hamaker constant obtained was larger by one order of magnitude than that available in the literature on the basis of the Lifshitz theory. An explanation of this discrepancy was given by taking into account the hydrophobic interaction between oil droplets in aqueous media. Coagulation of decane particles with Na in the presence of SDS (1 × 10?3M) was interpreted qualitatively in terms of the DLVO theory in which the adsorbed layer effect was taken into account. The critical adsorption density of SDS at which no coalescence of aml1sion takes place was found to be 3.3 × 10?10mol cm?2. Electrokinetic adsorption densities of SDS were found to be smaller than those obtained from the interfacial tension vs. concentration data.  相似文献   

17.
The fruit oils of Athamanta turbith ssp. hungarica and Athamanta turbith ssp. haynaldii were obtained by Soxhlet extraction using petroleum ether. The fatty acid composition of oils was determined by GC in the methyl ester form. Considering the composition and content of fatty acids, the examined oils were very similar. Petroselinic acid was the principal one (45.6 and 46.2%, respectively), followed by a significant amount of linoleic acid (26.9 and 29.1%, respectively). In both oils, myristic, pentadecanoic, palmitic, palmitoleic, stearic, petroselinic, oleic, linoleic, α-linolenic, arachidic, and behenic acid were identified. Lignoceric acid was detected only in A. turbith ssp. hungarica oil. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 319–320, July–August, 2006.  相似文献   

18.
Abstract Laser flash photolysis and pulse radiolysis have led to the characterisation of several shortlived intermediates formed after irradiation of retinoic acid and retinyl acetate in hexane or methanol. For retinoic acid, the triplet state, wavelength maximum 440 nm, extinction coefficient 7.3 × 104 dm3 mol?1 cm?1, decay constant 6.2 × 105 s?1, is formed with a quantum yield of 0.012 for 347 nm excitation. The radical cation, absorption maximum 590 nm, extinction coefficient ~7 × 104 dm3mol?1 cm?1, is formed in a biphotonic process. The radical anion, absorption maximum 510nm in hexane, 480 nm in methanol where its extinction coefficient is 1.2 × 105 dm3mol?1 cm?1, appears to decay partially in methanol into another longer-lived neutral radical, wavelength maximum 420 nm, by loss of OH?. For retinyl acetate, the triplet state, absorption maximum 395 nm, extinction coefficient 7.9 × 104dm3mol?1 cm?1, decay constant 1.2 × 106s?1 is formed with a quantum yield of 0.025 for 347 nm excitation. Monophotonic photoelimination of OCOCH3? in methanol produces the retinylic carbenium ion, wavelength maximum 590 nm, whose decay is enhanced by ammonia, k ~ 2 × 106 dm3 mol?1 s?1 and retarded by water. The radical cation also has a wavelength maximum at 590 nm, its extinction coefficient being ~ 1.0 × 105 dm3mol1 cm?1. The long-lived transient absorption with maximum at 385 nm, extinction coefficient 1.0 × 105 dm3mol?1 cm?1, obtained from the reaction of the solvated electron with retinyl acetate in methanol may be due to either the radical anion itself or more likely the radical resulting from elimination of OCOCH3? from this anion. These results suggest that skin photosensitivity caused by retinyl acetate might be greater than that due to retinoic acid.  相似文献   

19.
An attempt to evaluate the kinetically effective critical micelle concentration CMC of sodium dodecyl sulfate (SDS) in micellar solutions and in O/W emulsions at 40°C and pH 9 utilizing the pseudo first order rate constant of benzyl acetate hydrolysis was implemented. The critical micelle concentration of SDS in micellar solutions was determined by both surface tension measurements utilizing Wilhelmy plate technique and by rate constant of hydrolysis. Hydrolysis reaction of benzyl acetate was monitored in surfactant solutions as well as in o/w emulsions as a function of time. Emulsion droplets were controlled using microfluidizer 110 T and oily droplets were separated from the emulsion by ultracentrifugation at (11,500 rpm or 9,800 g) prior to analysis by high performance liquid chromatography. The value of the critical micelle concentration (CMC) in micellar solutions in the presence of benzyl acetate as determined from the Wilhelmy plate technique was 7.8 × 10?4 moles/L (CMC in micellar solution was 10 times lower than the value in literature due to use of buffer) while the CMC as determined from the kinetic study was 8.8 × 10?4 moles/L. In emulsion systems, using 5% mineral oil, the CMC value was 8.6 × 10?3 moles/L and at 10% oil, the value doubled to 1.73 × 10?2 moles/L. The above results indicate that kinetics can be used to determine CMC in micellar solutions and in o/w emulsions.  相似文献   

20.
The restriction to the use of synthetic antioxidants has fostered the research on natural antioxidants, taking into account that the prolonged usage of these substances can harm seriously the human being provoking degenerative diseases. In the present study, the antioxidant effect of the ethanolic rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of edible vegetable oils was investigated by means of the pressurized differential scanning calorimetry (PDSC) and oven test techniques. The rosemary extract, at the concentration of 2,000 mg kg?1, as well as the synthetic antioxidant tert-butylhydroquinone (TBHQ) at the concentrations of 100 and 200 mg kg?1 were added to samples of sunflower oil, corn oil, and soybean oil. The fatty acid profiles of the vegetable oils were determined by gas chromatography–mass spectrometry confirming the elevated contents of unsaturated fatty acids. The thermogravimetric analysis showed that the rosemary extract is stable at the frying temperature of the oils. The results of the oxidative stability demonstrated that the extract of Rosmarinus officinalis displayed a more effective protective action in the PDSC technique, when compared with the synthetic antioxidant TBHQ, indicating that it is a promising source of natural antioxidants for edible vegetable oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号