首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phase behavior of systems containing minimum amounts of sodium bis (2-ethylhexyl) sulfosuccinate with equimolar ratio of tetra ethyl ammonium chloride were studied as a function of salt concentration and alkane carbon number at ambient temperature. Visual inspection as well as cross polarizers were used to detect anisotropy. Solubilization ratios for oil and brine in the middle phases were measured and used to calculate the interfacial tension. Ultra-low interfacial tension values were predicted for the systems containing heptane, octane and nonane as model oil. Different phase behavior was observed for systems with higher alkane number.  相似文献   

2.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering interfacial tension in alkyl benzene sulfonate/brine/methyl oleate model oil and alkyl benzene sulfonate/alkali/methyl oleate model oil systems. We found that different mechanisms exist in above two systems. In alkyl benzene sulfonate/brine/methyl oleate model oil systems, methyl oleate influences the partition of added surfactants between oil and aqueous phase by changing equivalent alkane carbon number (EACN) value of model oil. In alkyl benzene sulfonate/alkali/methyl oleate model oil systems, methyl oleate in oil phase has two functions: on the one hand, it influences the partition of surfactant between oil and aqueous phase; on the other hand, it directly affects IFT by displacing surfactant molecule or forming mixed film with surfactant molecule at the interface.  相似文献   

3.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering dynamic interfacial tension in hydrocarbons/binary surfactant mixtures/brine systems. The dynamic interfacial tensions between hydrocarbons of different alkane carbon numbers (from 6 to 14) and solutions of binary surfactant mixtures were measured. We found that the synergism/antagonism for interfacial tension reduction in binary surfactant mixtures having low interfacial tension values was influenced by the alkane carbon number of oil phase, hydrophilic-lipophilic ability of surfactant, and NaCl concentration. A new explanation in view of interactions among surfactant molecules, oil molecules, and water molecules is provided.  相似文献   

4.
The partial ternary phase diagram of anionic extended surfactant of alkyl polypropylene oxide sulfate C12(PO)4SO4 alone and combined with the cationic hydrotrope, tetrabutyl ammonium bromide with water and decane were determined under ambient conditions. Middle phase microemulsion was formulated using salinity scans in the dilute region of surfactant/brine/decane. Visual inspection as well as cross polarizer and optical microscopy were used to detect anisotropy. Spinning drop tensiometer was used to measure interfacial tension (IFT). The first ternary phase diagram using the extended surfactant alone showed three one phase regions, the anisotropic lamellar liquid crystalline phase, L α and the isotropic L1 micellar liquid and L3 sponge phase. In the second ternary phase diagram using the extended surfactant combined with tetra butyl ammonium bromide, an isotropic micellar region, L 1, appeared in the diluted area of the phase diagram. Meanwhile the L α phase disappeared completely and the three phase region has a bluish transparent middle phase. Interfacial tension measurements between middle phase and brine, and between decane and brine yielded ultra low values. Calculated IFT values using the characteristic length obtained using De Gennes approximation gave almost half the measured values. The interfacial rigidity was also calculated and compared to values obtained from the literature.  相似文献   

5.
Experimental studies are conducted in order to elucidate the mechanisms responsible for synergism/antagonism for lowering dynamic interfacial tension in model oil/surfactant/brine systems. A well-defined model oil is selected for controlled design of experiments, thus enhancing verification of known and unknown mechanisms. The systems examined contain model oils and two petroleum sulfonate solutions. The influence of additives in oil phase, such as carboxylic acids with different chain length, n-octadecanol, and oil soluble surfactant SP-60, on the equivalent alkane carbon number (EACN) values has been examined. The interfacial tensions of different model oils with different EACN values against surfactant solutions with different n(min) values have also been obtained. We find that antagonism has been observed when EACN/n(min) value is far from unity by adding organic components, while synergism has been observed when EACN/n(min) value is close to unity. The results present here suggest that organic additives in oil phase controlled interfacial tension by changing the partition of surfactants in oil phase, aqueous phase, and interface.  相似文献   

6.
石油磺酸盐体系中相微乳液研究   总被引:8,自引:0,他引:8  
宽分子量分布的石油磺酸盐在低浓度时有正丁醇、正构烷烃、盐存在的情况下能成中相微乳液。研究了盐浓度、烷烃种类、醇浓度对该体系中相微乳液的形成及特性影响,得到中相微乳液的特性参数;最佳含盐量S^*、增溶参数σ、盐宽△S、界面张力γ等,并从理论上进行了探讨。采用模拟驱油装置测定了体系的驱油效率,对优化驱油体系设计具有重要意义。  相似文献   

7.
Lignin polyether sulfonate surfactants with lipophilic groups of different polymerization degree were synthesized and the dynamic interfacial tension (IFT) between solutions of these surfactants prepared with brine and two kinds of oil from Daqing and Huabei Oilfields were measured, respectively. The results showed that the surfactants were effective to lower the IFT between brine and the two kinds of oil. The structures of synthesized surfactants were analyzed by Fourier transform infrared spectroscopy. The contents and hydrophilic–lipophilic balance values of lignin polyether sulfonates were studied to evaluate the basic physicochemical properties of synthesized surfactants.  相似文献   

8.
The surface activity and thermodynamic properties for eight low molecular weight nonionic co‐polyester (PE) surfactants have been investigated. Surface and interfacial tensions (IFT) of surfactants in aqueous solutions were measured using the spinning drop technique. From these measurements, the critical micelle concentration (CMC), the surface pressure at CMC (YCMC), the maximum surface concentration (Γmax), the minimum area/molecule at the aqueous solution/air interface (Amin), the effectiveness of surface tension reduction (ΠCMC), the alkane carbon number (nmin) and the IFT at nmin (Ymin) were determined. The thermodynamic parameters of micellization (ΔGmic, ΔHmic and ΔSmic) and of adsorption (ΔGad, ΔHad and ΔSad) for these polymeric surfactants were also calculated. Structural effects on micellization and adsorption are discussed in terms of these parameters. The results show that the ΔGad values were more negative than ΔGmic values for these compounds, so that they favored adsorption before the micellization process. They exhibited IFT in the order of 10−3 to 10−4 mN/m against the thin alkane carbon number range 6–9. This range seemed to be prefered for enhanced oil recovery. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
To confirm the surface activity of myristic acid in the dispersion polymerization of vinyl monomers in scCO2, the interfacial tension (IFT) at the polymer/supercritical carbon dioxide (scCO2) interface has been measured. For the IFT measurements, a high-pressure pendant drop apparatus was constructed. The IFT data was obtained by the axisymmetric drop shape analysis of melt polymer droplets formed at the tip of a capillary. The reliability of the apparatus was confirmed by measuring the IFT of polystyrene (PS)/scCO2 and polypropylene (PP)/CO2 systems. The IFT of the poly(methyl methacrylate) (PMMA)/scCO2 system with and without myristic acid was also measured. The IFT decreased on addition of myristic acid. The magnitude of the IFT depression due to the myristic acid was comparable to that of PS/scCO2 systems with the block copolymer surfactant, PS-b-poly(fluorooctyl acrylate). The surface activity of the myristic acid was confirmed by the decrease of IFT.  相似文献   

10.
Alcohol-free microemulsions were formulated using mixtures of extended surfactant (C12-14-PO14-EO2SO4Na), sodium dodecyl benzene sulfonic acid and cationic hydrotropes with equal amounts of water and diesel. The cationic hydrotropes had short hydrocarbon or propylene oxide chain. The formulation included sodium carbonate to convert naphthenic acids in diesel to soaps. The phase behavior at ambient temperature of oil-free mixtures as a function of NaCl concentration was investigated. Visual inspection as well as cross polarizers were used to detect anisotropy. The microemulsion fish phase diagram and solubilization ratios for diesel and brine in the middle phases were determined. The minimum surfactant concentration needed to initiate middle phase formation was 0.10 wt%.

Salinity scans revealed that optimal salinity can be adjusted according to the hydrophilic/lipophilic nature of the hydrotrope used. Interfacial tension measurements using a spinning drop tensiometer showed a minimum value of 0.0015 mN/m between middle phase microemulsion and excess brine and a value of 0.032 mN/m between diesel and brine.  相似文献   

11.
This paper describes the effect of pH on phase behavior of branched tail EO carboxylate surfactants in electrolyte/ alkane microemulsion system3 which are of possible pertinence to enhanced oil recovery. The pH of the aqueous surfactant solutions was found to have a considerable effect on the salinity requirement for middle phase microemulsion formation. At 70 and 60°C alcohol-free optimal three phase microemulsion systems are formed with all alkanes studied over the entire pH range of 6-12. At lower temperatures and. higher pH values, liquid crystals were found to form in systems which contained lower molecular weight alkanes.  相似文献   

12.
A novel series of polymeric surfactants based on carboxy methyl cellulose and alkyl poly(etheroxy) acrylate were synthesized by ultrasonic irradiation. These polymeric surfactants have exhibit excellent surface activity due to their unique structure. The influences of salt, alcohol and alkali on the interfacial activity of these polymeric surfactants were studied by interfacial tensiometery, dynamic laser scattering (DLS), UV spectroscope and environmental scanning electrical microscope (ESEM). The surface tension and interfacial tension (IFT) properties change little with NaCl added. The formed micelles shrink, their size becomes smaller. Alcohols cause the IFT to decrease a little because a small amount of free chains present in solution. Under the influence of added alkali, the IFT of the polymeric surfactants, in aqueous solution, decreases so much that sometimes it is less than 10−2 mN/m. Using data from the equivalent alkane scan, one cannot draw the conclusion that the action of alkali with the acidic components in crude oil leads to the ultra-low IFT. The analyses by UV, DLS and ESEM show that the micelles formed by polymeric surfactants could be disaggregated or destroyed sharply by the action of alkali. So the size of micelles decreases greatly and the number of free chains increases. That more polymeric surfactants molecules move to the interface of oil/water and rearrange at the interface of oil/water is believed to be the main reason of the ultra-low IFT (10−3 mN/m) that is obtained.  相似文献   

13.
Oil/water/surfactant systems form complex equilibrium phases which are sensitive to a number of parameters, including amount and concentration of cosurfactant (often an alcohol), salinity, and temperature. If one of these variables is changed systematically as, for example, the salinity, an interesting transition may be observed in which at low salinities a microemulsion is in equilibrium with an excess oil phase, at moderate salinities a middle phase microemulsion is in equilibrium with both excess oil and excess water phases, and at higher salinities brine is in equilibrium with a microemulsion phase. To help elucidate the structure of the microemulsion, studies of viscoelasticity and streaming birefringence in oscillatory shear flow have been conducted of a middle phase-forming system as a function of salinity. It is found that the viscoelastic properties of the microemulsions are unchanged for shear rates varying from 0.1 to 100 sec−1. Both the birefringence and the viscosity maximize near the salinity marking the transition from lower phase to middle phase microemulsion. Further inflections in these properties occur at a salinity marking the midrange of the middle phase microemulsion. For all cases the dominent relaxation time is near 3 to 5 msec while the birefringence changes by two orders of magnitude. The birefringence is a sensitive indicator of the elastic structure of the microemulsion.  相似文献   

14.
The transition from liquid crystalline to microemulsion phases has been investigated by adding oil to surfactant—alcohol—brine mixtures in two systems containing anionic surfactants. At high salinities where the surfactant is preferentially soluble in oil, addition of oil first causes transition from a lamellar liquid crystal to a water-continuous isotropic phase which exhibits streaming birefringence and probably contains large, anisotropic micelles. This isotropic phase inverts to an oil-continuous microemulsion as oil content further increases. At somewhat lower salinities just below the “optimum” where the surfactant has equal solubilization capacities for oil and brine, the system passes through three three-phase regions as oil is added. In order of increasing oil content, these consist of two microemulsions in equilibrium with a lamellar liquid crystalline phase, the same two microemulsions in equilibrium with excess brine, and a microemulsion in equilibrium with excess oil and excess brine.  相似文献   

15.
Abstract

We have measured the interfacial tensions, vs. oil and brine, the electric conductivity and the magnetic susceptibility of microemulsions as a function of brine concentration and temperature.

The middle phase microemulsions exhibit the lowest interfacial tension, a sharp increase in the microemulsion/brine conductivity ratio and a maximum of the (diamagnetic) susceptibility.

The possibility of a percolative process and chemical or physical changes in the middle phase are discussed.  相似文献   

16.
Hand's method is typically used to empirically calculate the equilibrium compositions for ternary systems between two liquid phases. Oil field application of Hand's method is generally limited to surfactant phase behavior with oil and brine, primarily because the excess oil and brine phases are nearly immiscible. Hand's method is not accurate to represent liquid–vapor equilibrium, especially as oil and gas become miscible. It also requires iterations, which means there is no guarantee of convergence.  相似文献   

17.
In this work, for the first time, the Hydrophilic-Lipophilic Difference (HLD) framework for microemulsion formulation has been applied to silicone oils and silicone alkyl polyether surfactants. Based on the HLD equations and recently introduced mixing rules, we have quantified the hydrophobicity of the oils according to the equivalent alkane carbon number (EACN). We have found that, in a reference system containing sodium dihexyl sulfosuccinate (SDHS) as the surfactant, 0.65 centistoke (cSt) and 3.0 cSt silicone oils behave like n-dodecane and n-pentadecane, respectively. Silicone alkyl polyether surfactants were found to have characteristic curvatures ranging 3.4-18.9, exceeding that of most non-ionic surfactants. The introduction of methacrylic acid (MAA) and hydroxyethyl methacrylate (HEMA) to the aqueous phase caused a significant negative shift in HLD, indicative of an aqueous phase that is less hydrophilic than pure water. The more hydrophobic surfactants (largest positive curvatures) were used in order to compensate for this effect. These findings have led to the formulation of bicontinuous microemulsions (μEs) containing silicone oil, silicone alkyl polyether and reactive monomers in aqueous solution. Ternary phase diagrams of these systems revealed the potential for silicone-containing polymer composites with bicontinuous morphologies. These findings have also helped to explain the phase behavior of formulations previously reported in literature, and could help in providing a systematic, consistent approach to future silicone oil based microemulsion formulation.  相似文献   

18.
Surfactant based enhanced oil recovery (EOR) is an interesting area of research for several petroleum researchers. In the present work, individual and mixed systems of anionic and cationic surfactants consisting of sodium dodecyl sulphate (SDS) and cetyltrimethylammonium bromide (CTAB) in different molar ratios were tested for their synergistic effect on the crude oil-water interfacial tension (IFT) and enhanced oil recovery performance. The combination of these two surfactant systems showed a higher surface activity as compared to individual surfactants. The effect of mixed surfactant systems on the IFT and critical micellar concentration (CMC) is strongly depends on molar ratios of the two surfactant. Much lower CMC values were observed in case of mixed surfactant systems prepared at different molar ratios as compared to individual surfactant systems. The lowest CMC value was found when the molar concentration of SDS was higher than the CTAB. When the individual and mixed surfacant systems were tested for EOR performance through flooding experiments, higher ultimate oil recovery was obtained from mixed surfactant flooding compared to individual surfactants. Combination of SDS and CTAB or probably other anionic-cationic surfactants show synergism with substantial ability to reduce crude oil water IFT and can be a promising EOR method.  相似文献   

19.
由表面活性剂、醇、油和水所组成的微乳液,油相的烷烃长度会影响到微乳液的性质,主要表现在界面相组成和界面张力.Birdi 用加溶法研究以十六烷、硬脂酸钠、水和醇(从C_5到C_9)所组成的微乳液,醇的碳原子数n_a 与标准自由能△G(?)有以下关系:△G(?),醇=1563-839.5n_a(J·mol~(-1)在同样体系内,戊醇和不同烷烃则:  相似文献   

20.
Many carbonate oil reservoirs are oil-wet and fractured; waterflood recovery is very low. Dilute surfactant solution injection into the fractures can improve oil production from the matrix by altering the wettability of the rock to a water-wetting state. A 2D, two-phase, multicomponent, finite-volume, fully-implicit numerical simulator calibrated with our laboratory results is used to assess the sensitivity of the process to wettability alteration, IFT reduction, oil viscosity, surfactant diffusivity, matrix block dimensions, and permeability heterogeneity. Capillarity drives the oil production at the early stage, but gravity is the major driving force afterwards. Surfactants which alter the wettability to a water-wet regime give higher recovery rates for higher IFT systems. Surfactants which cannot alter wettability give higher recovery for lower IFT systems. As the wettability alteration increases the rate of oil recovery increases. Recovery rate decreases with permeability significantly for a low tension system, but only mildly for high tension systems. Increasing the block dimensions and increasing oil viscosity decreases the rate of oil recovery and is in accordance with the scaling group for a gravity driven process. Heterogeneous layers in a porous medium can increase or decrease the rate of oil recovery depending on the permeability and the aspect ratio of the matrix block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号