首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A simple method is used to control the size of cetyltrimethylammoniumbromide‐protected Au nanoparticles by a reversal micelle in safe organic solvent. These Au nanoparticles can be evolved to highly monodisperse Au nanoparticles capped 1‐dodecanthiol in the 2, 3, and 5 nm diameter by refluxing at~160°C for 7 hours. Their ultraviolet visible spectroscopy (UV‐vis), x‐ray diffraction (XRD, transmission electron microscopy (TEM) showed that all the three different size gold nanoparticles(NPs) displayed high size homogenous properties and easy formed large areas of long ordered two‐dimensional arrangement at the air/solid interface.  相似文献   

2.
Gold nanoparticles (Au NPs) with tailor‐made structures and properties are highly desirable for applications in catalysis and sensing. In this context, surface modifications of Au NPs are of particular relevance. Herein, we present a sequential surface modification of Au NPs with AgI coordination complexes, which can be converted into Ag0‐doped Au NPs by simple ligand‐exchange reaction. The key innovative element of this surface modification is a multifunctional bioxazoline‐based ligand that brings coordinated AgI into close proximity to the particle surface.  相似文献   

3.
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability (at low temperature, ca. 4 degrees C), were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as-prepared nanoparticles revealed the formation of well-dispersed Au NPs of ca. 2 nm diameter. Moreover, the color change of the Au NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on Au NPs. All the characterization results showed that the monodisperse Au NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature. On the basis of their excellent colloidal stability, controlled self-assembly ability, and biocompatible surface, the lysozyme monolayer-stabilized Au NPs hold great promise for being used in nanoscience and biomedical applications.  相似文献   

4.
It is highly demanding to design active nanomotors that can move in response to specific signals with controllable rate and direction. A catalysis‐driven nanomotor was constructed by designing catalytically and plasmonically active Janus gold nanoparticles (Au NPs), which generate an asymmetric temperature gradient of local solvent surrounding NPs in catalytic reactions. The self‐thermophoresis behavior of the Janus nanomotor is monitored from its inherent plasmonic response. The diffusion coefficient of the self‐thermophoresis motion is linearly dependent on chemical reaction rate, as described by a stochastic model.  相似文献   

5.
We demonstrate a novel approach for the production of patterned films of nanometer-sized Au/Ag bimetallic core/shell nanoparticles (NPs) on silicon wafers. In this approach, we first self-assembled monodisperse Au NPs, through specific Au...NH(2) interactions, onto a silicon substrate whose surface had been modified with a pattern of 3-aminopropyltrimethoxysilane (APTMS) groups to form a sandwich structure having the form Au NPs/APTMS/SiO(2). These Au NPs then served as seeds for growing the Au/Ag bimetallic core/shell NPs: we reduced silver ions to Ag metal on the surface of Au seeds under rapid microwave heating in the presence of sodium citrate. Energy-dispersive X-ray analysis confirmed that the Au/Ag bimetallic core/shell NPs grew selectively on the regions of the surface of the silicon wafer that had been patterned with the Au seeds. Scanning electron microscopy images revealed that we could synthesize well-scattered, high-density (>82%) thin films of Au/Ag bimetallic core/shell NPs through the use of this novel strategy. The patterned structures that can be formed are simple to produce, easily controllable, and highly reproducible; we believe that this approach will be useful for further studies of nanodevices and their properties.  相似文献   

6.
We report here a facile method to obtain folic acid (FA)‐protected gold nanoparticles (Au NPs) by heating an aqueous solution of HAuCl4/FA in which FA acts as both the reducing and stabilizing agent. The successful formation of FA‐protected Au NPs is demonstrated by UV/Vis spectroscopy, transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The intracellular uptake of these nanoparticles is facilitated by HeLa cells overexpressing the folate reporter, which itself is significantly inhibited by free FA in a competitive assay as quantified by inductively coupled plasma mass spectroscopy (ICP‐MS). This simple one‐step approach affords a new perspective for creating functional nanomaterials, and the resulting biocompatible, functional Au NPs may find some prospective applications in various biomedical fields.  相似文献   

7.
Ligand-stabilized gold nanoparticles (Au NPs) are promising materials for nanotechnology with applications in electronics, catalysis, and sensors. These applications depend on the ability to synthesize stable and monodisperse NPs. Herein, the design and synthesis of two series of dendritic thioether ligands and their ability to stabilize Au NPs is presented. The dendrimers have 1,3,5-trisubstituted benzene branching units bridged by either meta-xylene or ethylene moieties. A comparison between the two ligands shows how both size control and the stability of the NPs are influenced by the nature of the ligand-NP wrapping interaction. The meta-xylene-bridged ligands provided NPs with a narrow size distribution centered around a diameter of 1.2 nm, whereas the NPs formed with ethylene-bridged dendrimers lack long-term stability with NP aggregation detected by UV/Vis spectroscopy and transmission electron microscopy. The bulkier tert-butyl-functionalized meta-xylene bridges form larger ligand shells that inhibit further growth of the NPs and thus provide a simple route to stable and monodisperse Au NPs that may find use as functional components in nanoelectronic devices.  相似文献   

8.
A facile strategy is developed to synthesize Au nanoparticles (Au‐NPs) using water‐soluble poly(L ‐proline) (PLP). The synthesized NPs were characterized by TEM, FTIR and NMR spectroscopy, thermogravimetric analysis, and circular dichroism. It was found that PLP has a “dual” role as an efficient reductant of Au(III) and simultaneously as a stabilizing agent of Au‐NPs. The influence of PLP molecular weight, temperature, initial Au(III) concentration, and Au(III)/PLP molar ratio on the size and dispersity of Au‐NPs is examined. It was found that the unique extended secondary structure of PLP II resulted in the facile formation of highly crystalline Au‐NPs in water at a very low Au(III)/PLP molar ratio. These Au‐NPs have the smallest dimensions and size distributions among NPs synthesized so far by polymeric materials in aqueous media, and exhibit enduring colloidal stability. Therefore, by utilizing biocompatible and benign materials in water, we managed to obtain Au‐NPs, so as the final product is ready‐to‐use for biomedical applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
The first simple-cubic liquid crystal was obtained by coating monodisperse Au nanoparticles (NPs) with a thick corona of amino-substituted organic dendrons. This unusual structure was determined by grazing-incidence diffraction and electron density reconstruction and explained by analyzing the radial density profile of the corona. Another novel structure is proposed for the phase preceding the cubic one: a hexagonal superlattice composed of alternating dense and sparse strings of Au NPs.  相似文献   

10.
A uric acid (UA) electrochemical biosensor based on the Cu‐Au alloy nanoparticles (NPs) and uricase was developed. The electrodeposition technique of Cu‐Au alloy NPs was selected to be a convenient potentiostatic method at –0.8 V in a single solution containing both Au(III) and Cu2+. Cyclic voltammetry and scanning electron microscopy proved the successful deposition of Cu‐Au alloy NPs. EIS demonstrated the good conductivity of Cu‐Au alloy NPs. The enzyme was immobilized on the surface of Cu‐Au alloy NPs modified electrode by casting with chitosan solution. The ultimate biosensor showed linear amperometric response towards UA in the concentration range of 3.0 to 26.0 μM with a detection limit of 0.8 μM. The main feature of the biosensor was its short response time, which was attributed to the good conductivity of Cu‐Au alloy NPs. Furthermore, the biosensor could avoid the interference of ascorbic acid and oxygen.  相似文献   

11.
The impact of individual HAuCl4 nanoreactors is measured electrochemically, which provides operando insights and precise control over the modification of electrodes with functional nanoparticles of well‐defined size. Uniformly sized micelles are loaded with a dissolved metal salt. These solution‐phase precursor entities are then reduced electrochemically—one by one—to form nanoparticles (NPs). The charge transferred during the reduction of each micelle is measured individually and allows operando sizing of each of the formed nanoparticles. Thus, particles of known number and sizes can be deposited homogenously even on nonplanar electrodes. This is demonstrated for the decoration of cylindrical carbon fibre electrodes with 25±7 nm sized Au particles from HAuCl4‐filled micelles. These Au NP‐decorated electrodes show great catalyst performance for ORR (oxygen reduction reaction) already at low catalyst loadings. Hence, collisions of individual precursor‐filled nanocontainers are presented as a new route to nanoparticle‐modified electrodes with high catalyst utilization.  相似文献   

12.
This paper reports the first comparison of the structure and electrical conductivity properties of spin cast (SC) and Langmuir-Schaeffer (LS) films of regioregular poly(3-hexylthiophene) (P3HT). In addition, the effect of incorporating highly monodisperse Au nanoparticles (NPs), with a core diameter of approximately 5 nm, into SC and LS P3HT films is described. A detailed picture of molecular organization in the films has been obtained using ultraviolet-visible absorption spectroscopy, atomic force microscopy, field-emission scanning electron microscopy, X-ray diffraction, and X-ray reflectivity. Film morphology was correlated with pseudo-two-dimensional conductivity measured using scanning electrochemical microscopy, with P3HT in the semiconducting regime. It was found that SC films, which were slightly thicker than those formed with the LS technique, exhibited greater organization. This resulted in an order of magnitude higher lateral conductivity for the SC films. Inclusion of Au NPs (50 wt %) into both SC and LS films resulted in the formation of uniform and relatively flat (rms roughness approximately 1 nm) composite films. Surprisingly, the addition of NPs did not disrupt the characteristic crystal structure found for the native P3HT films. The effect of Au NPs on film lateral conductivity was found to be determined by the distribution of Au NPs within the polymer, which varied significantly between SC and LS films. Whereas Au NPs aggregated into hexagonally packed clusters in SC films, NPs in LS films were predominantly uniformly distributed between the lamella bilayer. It was found that, while the inclusion of Au NPs caused the lateral conductivity to decrease in SC films, in LS films, the lateral conductivity increased by a factor of 2.  相似文献   

13.
A highly efficient and versatile method for DNA separation using Au nanoparticles (Au NPs) as a tag based on microchip capillary electrophoresis (MCE) was developed. The thiol-modified DNA-binding Au NPs were utilized as a tag. Target DNA was sandwiched between Au NPs and probe DNA labeled with horseradish peroxidase (HRP). In electrophoresis separation, the difference in electrophoretic mobility between free probe and probe-target complex was magnified by Au NPs, which enabled the resulting mixture to be separated with high efficiency by microchip capillary electrophoresis. Horseradish peroxidase was used as a catalytic label to achieve sensitive electrochemical DNA detection via fast catalytic reactions. With this protocol, 27-mer DNA fragments with different sequences were separated with high speed and high resolution. The proposed method was critical to achieve improved DNA separations in hybridization analyses.  相似文献   

14.
A simple strategy was used to enhance band emission through the transfer of defect emission from ZnO to Au by using the energy match between the defect emission of ZnO and the surface plasmon absorbance of Au NPs through decorating the surface of ZnO nanoflowers with Au nanoparticles (Au NPs). The ZnO nanostructure, which was comprised of six nanorods that were attached on one side in a flower‐like fashion, was synthesized by using a hydrothermal method. The temperature‐dependent morphology and detailed growth mechanism were studied. The influence of the density of the Au NPs that were deposited onto the surface of ZnO on photoluminescence was investigated to optimize the configuration of the ZnO/Au system in terms of the maximum band emission. The sequential transfer of defect energy from ZnO to Au and electron transfer from excited Au to ZnO was proposed as a possible mechanism for the enhanced band emission.  相似文献   

15.
Biocompatible hyperbranched polyglycidol (HBP) has been demonstrated to be an effective reducing and stabilizing agent for the synthesis of highly water-soluble monometallic (Au, Ag, Pt, Pd, and Ru) and bimetallic (Au/Pt, Au/Pd, and Au/Ru) nanoparticles (NPs), which provides a general and green protocol to fabricate metal NPs. The HBP-assisted reduction of metal ions follows an analogous polyol process. The reduction reaction rate increases sharply by increasing the temperature and the molecular weight of HBP. The size of NPs is controllable simply by changing the concentration of the metal precursor. High molecular weight HBP is favorable for the formation of NPs with uniform size and improved stability. By utilizing hydroxyl groups in the HBP-passivation layer of Au NPs, TiO(2)/Au, GeO(2)/Au, and SiO(2)/Au nanohybrids are also fabricated via sol-gel processes, which sets a typical example for the creation of versatile metal NPs/inorganic oxide hybrids based on the as-prepared multifunctional NPs.  相似文献   

16.
Electrodeposition method, a simple, cheap, and flexible approach, to fabricate gold nanoparticle (Au NPs) films with an area larger than 1 cm2 on indium tin oxide (ITO) electrodes modified with (3‐mercaptopropyl) trimethoxysilane (MPTMS) was presented. Size‐controllable and high loading Au NPs were obtained, which were characterized by field‐emission scanning electron microscopic (FESEM) and UV‐vis spectroscopy. Our current method provides a versatile and facile pathway to fabricate large‐scale metal nanoparticles thin film, enhancing alternatives for academic investigation and industrial application.  相似文献   

17.
Noble metal nanoparticles (NPs) with 1–5 nm diameter obtained from NaHB4 reduction possess high catalytic activity. However, they are rarely used directly. This work presents a facile, versatile, and efficient aerosol‐spray approach to deliver noble‐metal NPs into metal oxide supports, while maintaining the size of the NPs and the ability to easily adjust the loading amount. In comparison with the conventional spray approach, the size of the loaded noble‐metal nanoparticles can be significantly decreased. An investigation of the 4‐nitrophenol hydrogenation reaction catalyzed by these materials suggests that the NPs/oxides catalysts have high activity and good endurance. For 1 % Au/CeO2 and Pd/Al2O3 catalysts, the rate constants reach 2.03 and 1.46 min?1, which is much higher than many other reports with the same noble‐metal loading scale. Besides, the thermal stability of catalysts can be significantly enhanced by modifying the supports. Therefore, this work contributes an efficient method as well as some guidance on how to produce highly active and stable supported noble‐metal catalysts.  相似文献   

18.
Thermally stable core–shell gold nanoparticles (Au NPs) with highly grafted polymer shells were synthesized by combining reversible addition‐fragmentation transfer (RAFT) polymerization and click chemistry of copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). First, alkyne‐terminated poly(4‐benzylchloride‐b‐styrene) (alkyne‐PSCl‐b‐PS) was prepared from the alkyne‐terminated RAFT agent. Then, an alkyne‐PSCl‐b‐PS chain was coupled to azide‐functionalized Au NPs via the CuAAC reaction. Careful characterization using FT‐IR, UV–Vis, and TGA showed that PSCl‐b‐PS chains were successfully grafted onto the Au NP surface with high grafting density. Finally, azide groups were introduced to PSCl‐b‐PS chains on the Au NP surface to produce thermally stable Au NPs with crosslinkable polymer shell ( Au‐PSN3b‐PS 1 ). As the control sample, PS‐b‐PSN3‐coated Au NPs ( Au‐PSN3b‐PS 2 ) were made by the conventional “grafting to” approach. The grafting density of polymer chains on Au‐PSN3b‐PS 1 was found to be much higher than that on Au‐PSN3b‐PS 2 . To demonstrate the importance of having the highly packed polymer shell on the nanoparticles, Au‐PSN3b‐PS 1 particles were added into the PS and PS‐b‐poly(2‐vinylpyridine) matrix, respectively. Consequently, it was found that Au‐PSN3b‐PS 1 nanoparticles were well dispersed in the PS matrix and PS‐b‐P2VP matrix without any aggregation even after annealing at 220 °C for 2 days. Our simple and powerful approach could be easily extended to design other core–shell inorganic nanoparticles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
In this article, a detailed electrochemical study of a novel 6‐ferrocenylhexanethiol (HS(CH2)6Fc) self‐assembled multiwalled carbon nanotubes‐Au nanoparticles (MWNTs/Au NPs) composite film was demonstrated. MWNTs/Au NPs were prepared by one‐step in situ synthesis using linear polyethyleneimine (PEI) as bifunctionalizing agent. HS(CH2)6Fc, which acted as the redox mediator, was self‐assembled to MWNTs/Au NPs via Au‐S bond. Transmission electron microscopy (TEM), energy‐dispersive X‐ray analysis (EDX), Fourier transformed infrared absorption spectroscopy (FT‐IR), UV‐visible absorption spectroscopy, and cyclic voltammetry were used to characterize the properties of the MWNTs/Au NPs/HS(CH2)6Fc nanocomposite. The preparation of the nanocomposite was very simple and effectively prevented the leakage of the HS(CH2)6Fc mediator during measurements. The electrooxidation of AA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique performance of MWNTs/Au NPs. The nanocomposite modified electrode exhibited excellent catalytic efficiency, high sensitivity, good stability, fast response (within 3 s) and low detection limit toward the oxidation of AA at a lower potential.  相似文献   

20.
It is of great importance to develop highly e?cient and stable Pt‐free catalysts for electrochemical hydrogen generation from water electrolysis. Here, monodisperse 7.5 nm copper‐doped ruthenium hollow nanoparticles (NPs) with abundant defects and amorphous/crystalline hetero‐phases were prepared and employed as efficient hydrogen evolution electrocatalysts in alkaline electrolyte. Specifically, these NPs only require a low overpotential of 25 mV to achieve a current density of 10 mA cm?2 in 1.0 M KOH and show acceptable stability after 2000 potential cycles, which represents one of the best Ru‐based electrocatalysts for hydrogen evolution. Mechanism analysis indicates that Cu incorporation can modify the electronic structure of Ru shell, thereby optimizing the energy barrier for water adsorption and dissociation processes or H adsorption/desorption. Cu doping paired with the defect‐rich and highly open hollow structure of the NPs greatly enhances hydrogen evolution activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号