首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
To study the effect of hydrophobic modification of the emulsifier on the relationship between emulsion stability and polymer emulsifier concentration, silicone oil emulsions were prepared using hydroxypropyl methylcellulose (original HPMC) and HPMC stearoxy ether (hydrophobic HPMC) at concentrations around their overlap concentrations. Both HPMC types completely emulsified the silicone oil. However, the volume fraction of silicone oil in the emulsion prepared using hydrophobic HPMC was less than that that by the original HPMC, and the average oil droplet size in the former emulsion was less than that in the latter emulsion. Increasing HPMC concentration led to increase in both the amount of adsorbed polymer emulsifier and the storage moduli in the linear region, irrespective of which HPMC was used. Stress-strain sweep curves obtained by a rheo-optical method showed that emulsions stabilized by the hydrophobic HPMC flowed slowly, even beyond the yield stress, whereas emulsions prepared using the original HPMC flowed quickly beyond the yield stress. The storage moduli of the emulsions prepared by the hydrophobic HPMC were larger than those prepared using the original HPMC.  相似文献   

2.
The objective of this work was to formulate and to further improve the stability of emulsions based on thyme essential oil. Several nonionic surfactants of different nature and with different hydrophilic?lipophilic balance (HLB) values were investigated. The surfactant with optimal HLB found for the thyme essential oil was Appyclean 6548 (HLB: 9-9.5). Afterwards, stabilizing biopolymers were added in order to improve emulsion stability. Properties of emulsions were evaluated in terms of droplet size and physical stability. Thyme essential oil/W emulsions formulated with a new biodegradable emulsifier (alkyl polypentoside) and welan gum as stabilizer were obtained with high shelf-life.  相似文献   

3.
To study the relationship between emulsion stability and polymer emulsifier concentration, the preparation of paraffin oil emulsions by hydroxypropyl methylcellulose (HPMC) was carried out with HPMC concentrations below the overlapping concentration (C(*)) of HPMC. The stability of the emulsions incorporating HPMC was investigated by measuring the creaming velocity, volume fraction of emulsified paraffin oil, oil droplet size, and some rheological responses such as the stress-strain sweep curve and strain and frequency dependences of dynamic viscoelastic moduli. The paraffin oil was almost emulsified by HPMC above C(*)/20: the volume fraction of paraffin oil in the emulsion was higher than 0.72. Increasing in the HPMC concentration led to decreases in both the average oil droplet size and creaming velocity and an increase in the yield stress. All emulsions behaved as solid-like viscoelastic matter. Additionally, the measured dynamic storage moduli were compared with those calculated from a relationship based on functions of the volume fraction of oil in the emulsions and Laplace pressure; good agreement between the measured and calculated moduli was obtained. On the other hand, at HPMC concentrations below C(*)/50, the emulsified paraffin oil became unstable and the oil and the HPMC solution eventually separated.  相似文献   

4.
The water-in-oil high internal phase emulsions were the subject of the study. The emulsions consisted of a super-cooled aqueous solution of inorganic salt as a dispersed phase and industrial grade oil as a continuous phase. The influence of the industrial grade oil type on a water-in-oil high internal phase emulsion stability was investigated. The stability of emulsions was considered in terms of the crystallization of the dispersed phase droplets (that are super-cooled aqueous salt solution) during ageing. The oils were divided into groups: one that highlighted the effect of oil/aqueous phase interfacial tension and another that investigated the effect of oil viscosity on the emulsion rheological properties and shelf-life. For a given set of experimental conditions the influence of oil viscosity for the emulsion stability as well as the oil/aqueous interfacial tension plays an important role. Within the frames of our experiment it was found that there are oil types characterized by optimal parameters: oil/aqueous phase interfacial tension being in the region of 19–24 mN/m and viscosity close to 3 mPa s; such oils produced the most stable high internal phase emulsions. It was assumed that the oil with optimal parameters kept the critical micelle concentration and surfactant diffusion rate at optimal levels allowing the formation of a strong emulsifier layer at the interface and at the same time creating enough emulsifier micelles in the inter-droplet layer to prevent the droplet crystallization.  相似文献   

5.
Sunflower oil and sesame oil contain fairly high percentage of tocopherols and tocotrienols. These oils were emulsified by using a combination of non‐ionic surface‐active agents viz. Span‐80 and Tween‐20 surfactants to get cosmetic emulsions. Stability of the emulsions was enhanced by using natural polymer additives. The effect of various parameters such as pH, oil content, emulsifier content, HLB of blend of emulsifier concentration of additives and temperature on the stability of cosmetic emulsion was studied. These emulsions are “skin compatible” being stable at neutral pH. Xanthan gum was found to be the most effective additive as compared to the other natural polymers. The emulsions showed a “pseudoplastic” flow behavior.  相似文献   

6.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

7.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

8.
Oil-in-water emulsions were prepared on a homogenizer from good premixes and poor premixes. The quality of the emulsions was determined by measuring the droplet size distribution using spectroturbidimetry. A good premix to the homogenizer produces a better emulsion than a poor premix. Premix conditions become less important when the concentration of emulsifier is increased in relation to the amount of oil. Increasing oil concentration results in a poorer final emulsion. Large amounts of emulsifier negate the advantage of using the homogenizer, but greater mechanical energy input can compensate for reduced emulsifier concentration, a cost saving when formulating an emulsion.  相似文献   

9.
张源  梁启富  张小兵  刘峰 《应用化学》2012,29(1):106-112
以辛烯基琥珀酸淀粉钠和油酸甲酯分别为替代乳化剂和溶剂,采用浓缩乳化法制备了高度稳定的2.5%高效氯氟氰菊酯水乳剂,通过测定乳液油滴粒径分布,结合乳液外观研究了乳化方法、预处理液中辛烯基琥珀酸淀粉钠质量分数、转速和剪切时间等工艺条件对乳液稳定性的影响.研究结果表明,辛烯基琥珀酸淀粉钠对油酸甲酯具有较好乳化效果,以其为乳化剂可制备高度稳定的2.5%高效氯氟氰菊酯水乳剂,油滴平均粒径在1.2 μm左右,且加速试验[即(54±2)℃密封14 d]和常温储存6个月后平均粒径仅增长了0.1~0.3μm,外观无变化;采用浓缩乳化法且预处理液中辛烯基琥珀酸淀粉钠质量分数在15%~25%时乳液稳定性较好,提高转速可降低油滴平均粒径,但对乳液均一性无显著影响,延长剪切时间对油滴平均粒径影响不大,但有利于提高乳液均一性;辛烯基琥珀酸淀粉钠为乳化剂制备的高效氯氟氰菊酯水乳剂稳定性优于常规水乳剂.  相似文献   

10.
The double emulsion technology has a potential effect on the development of diversity and quality of functional foods by means of decreasing oil or salt concentration, encapsulating and controlling release of valuable components. In this study, it was aimed to formulate stable double emulsions to be used in food systems. W1/O ratios of primary emulsions, stabilized by polyglycerol polyricinoleate (PGPR), were designed as 2:8 and 4:6, and (W1/O)/W2 ratios of the double emulsions were used as 2:8 and 4:6. W/O/W phase ratios, homogenization methods applied to primary emulsion (high-speed homogenization, ultrasonic homogenization), and emulsifier types used in W2 phase [sodium caseinate (SC), xanthan gum, lecithin-whey protein concentrate] were used as independent variables. Particle size and distributions, stability, encapsulation efficiency (EE), rheological properties, long-term stability, and morphological properties of the double emulsions were investigated.

The double emulsions prepared with SC and (W1/O)/W2 ratio of 4:6, were found to have the higher stability values, higher apparent viscosity, and lower particle size. High-speed homogenization applied to primary emulsion reduced particle size of the double emulsion and increased apparent viscosity, but did not affect stability and EE of the double emulsions, significantly.  相似文献   

11.
This paper was aimed at determining the parameters responsible for the long-term stability of emulsions. Compositions of six emulsions with different amounts of emulsifier and thickener were developed according to the authors’ own specifications and requirements of KT-Skor software (based on Kleeman’s method). Physical properties of the emulsions were evaluated (determination of emulsion type, structure of emulsion, stability tests, viscosity, average particle size, and dispersity index). The results obtained indicate that the emulsion containing 10?g of rose oil and 0.2?g of thickener exhibited the highest stability.  相似文献   

12.
Chitosan without hydrophobic modification is not a good emulsifier itself. However, it has a pH-tunable sol-gel transition due to free amino groups along its backbone. In the present work, a simple reversible Pickering emulsion system based on the pH-tunable sol-gel transition of chitosan was developed. At pH > 6.0, as adjusted by NaOH, chitosan was insoluble in water. Chitosan nanoparticles or micrometer-sized floccular precipitates were formed in situ. These chitosan aggregates could adsorb at the interface of oil and water to stabilize the o/w emulsions, so-called Pickering emulsions. At pH < 6.0, as adjusted by HCl, chitosan was soluble in water. Demulsification happened. Four organic solvents (liquid paraffin, n-hexane, toluene, and dichloromethane) were chosen as the oil phase. Reversible emulsions were formed for all four oils. Chitosan-based Pickering emulsions could undergo five cycles of emulsification-demulsification with only a slight increase in the emulsion droplet size. They also had good long-term stability for more than 2 months. Herein, we give an example of chitosan without any hydrophobic modification to act as an effective emulsifier for various oil-water systems. From the results, we have determined that natural polymers with a stimulus-responsive sol-gel transition should be a good particulate emulsifier. The method for in situ formation of pH-responsive Pickering emulsions based on chitosan will open up a new route to the preparation of a wide range of reversible emulsions.  相似文献   

13.
This study shows the effects of the Tween 60 emulsifier at different concentrations on the aqueous emulsion containing 5% of Pistacia lentiscus fruit oil. The rheological behavior and the droplet size distribution of cosmetic oil-in-water emulsions were investigated. This investigation was carried out by analyzing the shear flow and dynamic oscillatory followed by microscopic analysis and physical stability study for 24?hours and 4 months. During the period of 4 months, the emulsions were stored in a refrigerator at a semi-low temperature 12?°C. The physical stability test showed that the sample not emulsified yielded a creaming process after a short aging time. Flow curves of emulsions prepared with TW 60 exhibited a non-linear relationship between the shear stress σ and shear rate γ ?, which implies that the Herschel–Bulkley rheological model was the appropriate model for the shear flow. The increase of emulsifier quantities leading to an increase in the internal structure coherence, whereas the excess quantity affects the structure. Therefore, the optimal quantity proposed was 3.47%. Furthermore, the storage time at a semi-low temperature performed the stability and maintain the structure of emulsions.  相似文献   

14.
Drug carrier emulsions were prepared with structured phosphatidylcholine (PC-LM) which has both a long hydrocarbon chain and a medium hydrocarbon chain, and the characteristics of PC-LM as an emulsifier were investigated by measuring the creaming ratio, the surface tension of the emulsion system, and the mean particle size and zeta potential of the oil droplets in emulsions. The emulsion prepared with PC-LM as an emulsifier kept the condition and the ratio of separation was lower than those with purified egg yolk lecithin (PEL). The mean particle size of the emulsion prepared with PC-LM was smaller than that with PEL when using only sonication, approximately 250 nm. When using a high-pressure homogenizer after sonication, the mean emulsion size with PC-LM was also smaller than with PEL, approximately 150 nm. The surface tension of the various emulsions and the zeta potential of the emulsion droplets were measured to investigate the stability of the systems. In emulsions with PC-LM or PEL, the surface tension as an index of stability increased as the pressure of the homogenizer increased. Moreover, the zeta potential of the emulsion droplets prepared with PC-LM also increased with an increase in pressure of the homogenizer. As a result, it was found that the drug carrier emulsion prepared with PC-LM had significant advantages in terms of stability and mean diameter. We considered it could be used for the preparations of nanoparticle dispersion systems in drug delivery systems.  相似文献   

15.
Oil-in-water emulsions (60% oil (w/w)) were prepared using whey protein aggregates as the sole emulsifying agent. The effects of whey protein aggregate size (the diameter between 0.92 and 10.9?µm), the pH of emulsions (4–8.6) and storage time on physical properties, droplet size, and stability of emulsions were investigated. The results indicate that increment of whey protein aggregate size caused an increase in the firmness, droplet size, and viscosity of emulsions, and also a decrease in the emulsion creaming. The emulsion viscosity, firmness, and droplet size were reduced by increasing the emulsion pH; however, the creaming process was accelerated. Viscosity, creaming, and droplet size of emulsions were increased slightly during 21 days storage at 40°C.  相似文献   

16.
In this article, the effects of various operating factors on the surface tension, viscosity, and stability of two heavy oil types in water emulsions for pipeline transportation are studied using the Taguchi experimental design approach. The surface tension of heavy crude oil-in-water emulsion is decreased by increasing the emulsifier concentration while the stability of emulsions is increased. The viscosity and stability are increased by an increase in oil content. An increase in the salinity and mixing speed leads to an increase in the stability of emulsion.  相似文献   

17.
The formation of stable water-in-crude oil emulsions during petroleum production and refinery may create sever and costly separation problems. It is very important to understand the mechanism and factors contributing to the formation and stabilization of such emulsions for both great economic and environmental development. This article investigates some of the factors controlling the stability of water-in-crude oil emulsions formed in Burgan oil field in Kuwait. Water-in-crude oil emulsion samples collected from Burgan oil filed have been used to separate asphaltenes, resins, waxes, and crude oil fractions. These fractions were used to prepare emulsion samples to study the effect of solid particles (Fe3O4) on the stability of emulsions samples. Results indicate that high solid content lead to higher degree of emulsion stability. Stability of emulsion samples under various waxes to asphaltenes (W/A) ratios have also been tested. These tests showed that at low W/A content, the emulsions were very stable. While at a wax to asphaltene ratio above 1 to 1, the addition of wax reduced emulsion stability. Stability of emulsion samples with varying amount of water cut has also been investigated. Results indicated that stability and hence viscosity of emulsion increases as a function of increasing the water cut until it reaches the inversion point where a sharp decline in viscosity takes place. This inversion point was found to be approximately at 50% water cut for the crude oils considered in this study.  相似文献   

18.
An emulsifier with a targeted antioxidant effect was prepared using the inclusion complexes of octenyl succinic anhydride (OSA)-modified cassava amylose (CA) and quercetin (Q). The designed emulsifier, a carbohydrate polymer-flavonoid complex, exhibited both amphiphilic and antioxidant properties. To investigate the physical and oxidation stabilities of the prepared emulsion, three types of emulsions were prepared: primary emulsions stabilized by enzyme-modified starch, secondary emulsions stabilized by OSA-CA, and tertiary emulsions stabilized by Q-encapsulated complexes (OSA-CA/Q). The structural characteristics of CA, OSA-CA, and OSA-CA/Q were investigated by scanning electron microscopy, Fourier transform infrared spectrometry, and small-angle X-ray scattering analysis. The stabilities of the emulsions were evaluated based on their particle size distribution, zeta potential, creaming stability, and peroxide value. The results showed that the secondary and tertiary emulsions exhibited a relatively narrower particle size distribution than the primary emulsions, but the particle size distribution of the tertiary emulsions was the narrowest (10.42 μm). Moreover, the secondary and tertiary emulsions had lower delamination indices than the primary emulsions after 7 days of storage. The results obtained from the antioxidant experiments indicated that OSA-CA/Q exhibited good oxidation stability for application in emulsion systems.  相似文献   

19.
Excellent stability of water-in-oil emulsions could be obtained by partial crosslinking of the fatty chain in several polyglycerol fatty esters. Such products were capable of emulsifying and stabilizing up to 50 wt% water in vegetable oils at a level of 3-5% emulsifier per total emulsion weight. The corresponding non-crosslinked products require at least 20-25% emulsifier to give the sane level of stability, with much higher viscosity.

Degree of polymerization, molecular weight distribution, viscosity, dielectric constant and refractive index of the emulsifier were correlated to the emulsion stability. The most remarkable result is a clear correlation between the molecular weight of the emulsifier and emulsion stability; best emulsions were prepared with polymeric emulsifier with MW of Ca. 40000.  相似文献   

20.
The objective of the current study was to evaluate long-term stability of emulsions with rice oil by assessing their physical properties. For this purpose, six emulsions were prepared, their stability was examined empirically, and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil and thickener content) were indicated with optimization software based on Kleeman's method. Synthesized emulsions were studied by numerous techniques involving determination of particle size and distribution of emulsion, optical microscopy, viscosity, and novelty analysis—Turbiscan test.

The emulsion containing 50 g of oil and 1.2 g of thickener had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 35.93 to 50 g of oil and 0.94 to 1.19 g of thickener. The computer software based on Kleeman's method proved to be useful for fast optimization of the composition and providing parameters of stable emulsion systems. Forming emulsions based on rice oil is a chance to introduce a new, interesting representative of functional food as well as a cosmetic product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号