首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
By using the F–B function and smoothing technique to convert the nonlinear complementarity problems to smoothing nonlinear systems, and introducing perturbation parameter μk into the smoothing Newton equation, we present a new smoothing Levenberg–Marquardt method for general nonlinear complementarity problems. For general mapping F, not necessarily a P0 function, the algorithm has global convergence. Each accumulation point of the iterative sequence is at least a stationary point of the problem. Under the local error bound condition, which is much weaker than nonsingularity assumption or the strictly complementarity condition, we get the local superlinear convergence. Under some proper condition, quadratic convergence is also obtained.  相似文献   

2.
袁敏  万中 《计算数学》2014,36(1):35-50
提出了一种新的磨光函数,在分析它与已有磨光函数不同特性的基础上,研究了将它用于求解非线性P_0互补问题时,其磨光路径的存在性和连续性,进而设计了求解一类非线性P_0互补问题的非单调磨光算法.在适当的假设条件下,证明了该算法的全局收敛性和局部超线性收敛性.数值算例验证了算法的有效性.  相似文献   

3.
In this paper, we introduce a new class of smoothing functions, which include some popular smoothing complementarity functions. We show that the new smoothing functions possess a system of favorite properties. The existence and continuity of a smooth path for solving the nonlinear complementarity problem (NCP) with a P 0 function are discussed. The Jacobian consistency of this class of smoothing functions is analyzed. Based on the new smoothing functions, we investigate a smoothing Newton algorithm for the NCP and discuss its global and local superlinear convergence. Some preliminary numerical results are reported.  相似文献   

4.
In this paper, we consider the second-order cone complementarity problem with P 0-property. By introducing a smoothing parameter into the Fischer-Burmeister function, we present a smoothing Newton method for the second-order cone complementarity problem. The proposed algorithm solves only a linear system of equations and performs only one line search at each iteration. At the same time, the algorithm does not have restrictions on its starting point and has global convergence. Under the assumption of nonsingularity, we establish the locally quadratic convergence of the algorithm without strict complementarity condition. Preliminary numerical results show that the algorithm is promising.  相似文献   

5.
陈金雄  刘宁 《数学杂志》2015,35(4):905-916
本文研究了一个P0非线性互补问题.利用信赖域技术获得了求解该问题的光滑Levenberg-Marquardt算法,该算法在一定条件下具有全局性.利用局部误差界还获得了该算法的超线性和二次收敛.数值结果表明该算法是有效的.  相似文献   

6.
7.
In this paper, we first investigate a two-parametric class of smoothing functions which contains the penalized smoothing Fischer-Burmeister function and the penalized smoothing CHKS function as special cases. Then we present a smoothing Newton method for the nonlinear complementarity problem based on the class of smoothing functions. Issues such as line search rule, boundedness of the level set, global and quadratic convergence are studied. In particular, we give a line search rule containing the common used Armijo-type line search rule as a special case. Also without requiring strict complementarity assumption at the P0-NCP solution or the nonemptyness and boundedness of the solution set, the proposed algorithm is proved to be globally convergent. Preliminary numerical results show the efficiency of the algorithm and provide efficient domains of the two parameters for the complementarity problems.  相似文献   

8.
In last decades, there has been much effort on the solution and the analysis of the mixed complementarity problem (MCP) by reformulating MCP as an unconstrained minimization involving an MCP function. In this paper, we propose a new modified one-step smoothing Newton method for solving general (not necessarily P0) mixed complementarity problems based on well-known Chen-Harker-Kanzow-Smale smooth function. Under suitable assumptions, global convergence and locally superlinear convergence of the algorithm are established.  相似文献   

9.
The mixed complementarity problem (denote by MCP(F)) can be reformulated as the solution of a smooth system of equations. In the paper, based on a perturbed mid function, we propose a new smoothing function, which has an important property, not satisfied by many other smoothing function. The existence and continuity of a smooth path for solving the mixed complementarity problem with a P0 function are discussed. Then we presented a one-step smoothing Newton algorithm to solve the MCP with a P0 function. The global convergence of the proposed algorithm is verified under mild conditions. And by using the smooth and semismooth technique, the rate of convergence of the method is proved under some suitable assumptions.  相似文献   

10.
In this paper, a new hybrid method is proposed for solving nonlinear complementarity problems (NCP) with P 0 function. In the new method, we combine a smoothing nonmonotone trust region method based on a conic model and line search techniques. We reformulate the NCP as a system of semismooth equations using the Fischer-Burmeister function. Using Kanzow’s smooth approximation function to construct the smooth operator, we propose a smoothing nonmonotone trust region algorithm of a conic model for solving the NCP with P 0 functions. This is different from the classical trust region methods, in that when a trial step is not accepted, the method does not resolve the trust region subproblem but generates an iterative point whose steplength is defined by a line search. We prove that every accumulation point of the sequence generated by the algorithm is a solution of the NCP. Under a nonsingularity condition, the superlinear convergence of the algorithm is established without a strict complementarity condition.  相似文献   

11.
By using the Fischer–Burmeister function to reformulate the nonlinear complementarity problem (NCP) as a system of semismooth equations and using Kanzow’s smooth approximation function to construct the smooth operator, we propose a smoothing trust region algorithm for solving the NCP with P 0 functions. We prove that every accumulation point of the sequence generated by the algorithm is a solution of the NCP. Under a nonsingularity condition, local Q-superlinear/Q-quadratic convergence of the algorithm is established without the strict complementarity condition. This work was partially supported by the Research Grant Council of Hong Kong and the National Natural Science Foundation of China (Grant 10171030).  相似文献   

12.
In this paper, we consider a new non-interior continuation method for the solution of nonlinear complementarity problem with P 0-function (P 0-NCP). The proposed algorithm is based on a smoothing symmetric perturbed minimum function (SSPM-function), and one only needs to solve one system of linear equations and to perform only one Armijo-type line search at each iteration. The method is proved to possess global and local convergence under weaker conditions. Preliminary numerical results indicate that the algorithm is effective.  相似文献   

13.
In this paper, we propose a new smoothing Broyden-like method for solving nonlinear complementarity problem with P 0 function. The presented algorithm is based on the smoothing symmetrically perturbed minimum function φ(a, b) = min{a, b} and makes use of the derivative-free line search rule of Li et al. (J Optim Theory Appl 109(1):123–167, 2001). Without requiring any strict complementarity assumption at the P 0-NCP solution, we show that the iteration sequence generated by the suggested algorithm converges globally and superlinearly under suitable conditions. Furthermore, the algorithm has local quadratic convergence under mild assumptions. Some numerical results are also reported in this paper.  相似文献   

14.
We propose a one-step smoothing Newton method for solving the non-linear complementarity problem with P0-function (P0-NCP) based on the smoothing symmetric perturbed Fisher function(for short, denoted as the SSPF-function). The proposed algorithm has to solve only one linear system of equations and performs only one line search per iteration. Without requiring any strict complementarity assumption at the P0-NCP solution, we show that the proposed algorithm converges globally and superlinearly under mild conditions. Furthermore, the algorithm has local quadratic convergence under suitable conditions. The main feature of our global convergence results is that we do not assume a priori the existence of an accumulation point. Compared to the previous literatures, our algorithm has stronger convergence results under weaker conditions.  相似文献   

15.
We propose a new smoothing Newton method for solving the P 0-matrix linear complementarity problem (P 0-LCP) based on CHKS smoothing function. Our algorithm solves only one linear system of equations and performs only one line search per iteration. It is shown to converge to a P 0-LCP solution globally linearly and locally quadratically without the strict complementarity assumption at the solution. To the best of author's knowledge, this is the first one-step smoothing Newton method to possess both global linear and local quadratic convergence. Preliminary numerical results indicate that the proposed algorithm is promising.  相似文献   

16.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

17.
A Smoothing Newton Method for General Nonlinear Complementarity Problems   总被引:5,自引:0,他引:5  
Smoothing Newton methods for nonlinear complementarity problems NCP(F) often require F to be at least a P 0-function in order to guarantee that the underlying Newton equation is solvable. Based on a special equation reformulation of NCP(F), we propose a new smoothing Newton method for general nonlinear complementarity problems. The introduction of Kanzow and Pieper's gradient step makes our algorithm to be globally convergent. Under certain conditions, our method achieves fast local convergence rate. Extensive numerical results are also reported for all complementarity problems in MCPLIB and GAMSLIB libraries with all available starting points.  相似文献   

18.
Recently, Chen and Tseng extended non-interior continuation/ smooth- ing methods for solving linear/ nonlinear complementarity problems to semidefinite complementarity problems (SDCP). In this paper we propose a non-interior continuation method for solving the monotone SDCP based on the smoothed Fischer—Burmeister function, which is shown to be globally linearly and locally quadratically convergent under suitable assumptions. Our algorithm needs at most to solve a linear system of equations at each iteration. In addition, in our analysis on global linear convergence of the algorithm, we need not use the assumption that the Fréchet derivative of the function involved in the SDCP is Lipschitz continuous. For non-interior continuation/ smoothing methods for solving the nonlinear complementarity problem, such an assumption has been used widely in the literature in order to achieve global linear convergence results of the algorithms.  相似文献   

19.
The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.  相似文献   

20.
The nonlinear complementarity problem (denoted by NCP(F)) can be reformulated as the solution of a nonsmooth system of equations. In this paper, we propose a new smoothing and regularization Newton method for solving nonlinear complementarity problem with P 0-function (P 0-NCP). Without requiring strict complementarity assumption at the P 0-NCP solution, the proposed algorithm is proved to be convergent globally and superlinearly under suitable assumptions. Furthermore, the algorithm has local quadratic convergence under mild conditions. Numerical experiments indicate that the proposed method is quite effective. In addition, in this paper, the regularization parameter ε in our algorithm is viewed as an independent variable, hence, our algorithm seems to be simpler and more easily implemented compared to many previous methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号