首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For an integer k > 2, the best function m(n, k) is determined such that every strong digraph of order n with at least m(n, k) arcs contains a circuit of length k or less.  相似文献   

2.
The strong orientation problem is: Given an undirected graph, G, assign orientations to its edges so that the resulting directed graph is strongly connected. Robbins showed when such an orientation exists. A generalization of this problem is when the input graph is mixed (i.e., contains some directed and some undirected edges). Boesch and Tindell gave necessary and sufficient conditions for a strong orientation to exist in a mixed graph. In this paper we give an NC algorithm for constructing a strong orientation for a given mixed graph after determining if it exists. We also give an NC algorithm for adding a minimum set of arcs to a mixed graph to make it strongly orientable. We give simplified NC algorithms for the following special cases: find minimum augmentations to make a digraph strongly connected and to make an undirected graph bridge-connected. All the algorithms presented run within the time and processor bounds required for computing the transitive closure of a digraph.  相似文献   

3.
SupposeX is a convex configuration with radius of maximum curvaturer and at most one of the edges joining neighboring points has length strictly greater thanr. We use the variational approach to show the Steiner treeS coincides with the minimal spanning tree and consists of all these edges with a longest edge removed. This generalizes Graham's problem for points on a circle, which we had solved. In addition we describe the minimal spanning tree for certain convex configurations.  相似文献   

4.
We investigate various types of stability for powers and products of nonsingular M-matrices. Stability of the matrix powers is categorized according to the length of the longest simple circuit in the digraph of the matrix, while stability of the general products is categorized by the order of the matrices. Additional results are given regarding stability of the Hadamard product of M-matrices and for matrices whose digraph has a longest simple circuit of length two.  相似文献   

5.
We show that a strongly connected digraph with n vertices and minimum degree ? n is pancyclic unless it is one of the graphs Kp,p. This generalizes a result of A. Ghouila-Houri. We disprove a conjecture of J. A. Bondy by showing that there exist hamiltonian digraphs with n vertices and 12n(n + 1) – 3 edges which are not pancyclic. We show that any hamiltonian digraph with n vertices and at least 12n(n + 1) – 1 edges is pancyclic and we give some generalizations of this result. As applications of these results we determine the minimal number of edges required in a digraph to guarantee the existence of a cycle of length k, k ? 2, and we consider the corresponding problem where the digraphs under consideration are assumed to be strongly connected.  相似文献   

6.
In the context of the degree/diameter problem for directed graphs, it is known that the number of vertices of a strongly connected bipartite digraph satisfies a Moore‐like bound in terms of its diameter k and the maximum out‐degrees (d1, d2) of its partite sets of vertices. It has been proved that, when d1d2 > 1, the digraphs attaining such a bound, called Moore bipartite digraphs, only exist when 2 ≤ k ≤ 4. This paper deals with the problem of their enumeration. In this context, using the theory of circulant matrices and the so‐called De Bruijn near‐factorizations of cyclic groups, we present some new constructions of Moore bipartite digraphs of diameter three and composite out‐degrees. By applying the iterated line digraph technique, such constructions also provide new families of dense bipartite digraphs with arbitrary diameter. Moreover, we show that the line digraph structure is inherent in any Moore bipartite digraph G of diameter k = 4, which means that G = L G′, where G′ is a Moore bipartite digraph of diameter k = 3. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 171–187, 2003  相似文献   

7.
给定正整数j≥k,有向图D的一个L(j,k)-标号是指从V(D)到非负整数集的一个函数f,使得当x在D中邻接到y时|f(x)-f(y)|≥j,当x在D中到y距离为二时|f(x)-f(y)|≥k.f的像元素称为标号.L(j,k)一标号问题就是确定(?)j,k-数(?)j,k(D),这个参数等于(?) max{f(x)|x∈V(D)},这里f取遍D的所有L(j,k)-标号.本文根据有向图的有向着色数及最长有向路的长度来研究(?)j,k-数,证明了:(1)对任何有向着色数为(?)(D)的有向图D,(?)j,k(D)≤((?)(D)-1)j;(2)对任何最长有向路的长度为l的有向图D,如果不含有向圈或者D中最长有向圈长度为l 1,则(?)j,k(D)≤lj.并且这两个界都是可达的.最后我们对l=3的有向图给出了3j-L(j,k)-labelling的一个有效算法.  相似文献   

8.
The cop number c(G) of a graph G is an invariant connected with the genus and the girth. We prove that for a fixed k there is a polynomial-time algorithm which decides whether c(G)k. This settles a question of T. Andreae. Moreover, we show that every graph is topologically equivalent to a graph with c ≤ 2. Finally we consider a pursuit-evasion problem in Littlewood′s miscellany. We prove that two lions are not always sufficient to catch a man on a plane graph, provided the lions and the man have equal maximum speed. We deal both with a discrete motion (from vertex to vertex) and with a continuous motion. The discrete case is solved by showing that there are plane graphs of cop number 3 such that all the edges can be represented by straight segments of the same length.  相似文献   

9.
Given an arc-capacitated digraph and k terminal vertices, the directed maximum integer multiterminal flow problem is to route the maximum number of flow units between the terminals. We introduce a new parameter kL?k for this problem and study its complexity with respect to kL.  相似文献   

10.
Given an edge weighted graph, the maximum edge-weight connected graph (MECG) is a connected subgraph with a given number of edges and the maximal weight sum. Here we study a special case, i.e. the Constrained Maximum Edge-Weight Connected Graph problem (CMECG), which is an MECG whose candidate subgraphs must include a given set of k edges, then also called the k-CMECG. We formulate the k-CMECG into an integer linear programming model based on the network flow problem. The k-CMECG is proved to be NP-hard. For the special case 1-CMECG, we propose an exact algorithm and a heuristic algorithm respectively. We also propose a heuristic algorithm for the k-CMECG problem. Some simulations have been done to analyze the quality of these algorithms. Moreover, we show that the algorithm for 1-CMECG problem can lead to the solution of the general MECG problem.  相似文献   

11.
《Journal of Graph Theory》2018,89(3):304-326
A famous conjecture of Gyárfás and Sumner states for any tree T and integer k, if the chromatic number of a graph is large enough, either the graph contains a clique of size k or it contains T as an induced subgraph. We discuss some results and open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star S and integer k, if the chromatic number of a digraph is large enough, either the digraph contains a clique of size k or it contains S as an induced subgraph. As an evidence, we prove that for any oriented star S, every oriented graph with sufficiently large chromatic number contains either a transitive tournament of order 3 or S as an induced subdigraph. We then study for which sets of orientations of P4 (the path on four vertices) similar statements hold. We establish some positive and negative results.  相似文献   

12.
Given a digraph (directed graph) with a labeling on its arcs, we study the problem of finding the Eulerian circuit of lexicographically minimum label. We prove that this problem is NP-complete in general, but if the labelling is locally injective (arcs going out from each vertex have different labels), we prove that it is solvable in linear time by giving an algorithm that constructs this circuit. When this algorithm is applied to a de Bruijn graph, it obtains the de Bruijn sequences with lexicographically minimum label.  相似文献   

13.
We prove that every digraph D with n≥7, n≥+6 vertices and at least (nk−1)(n−1)+k(k+1) arcs contains all symmetric cycles of length at most nk−2, an almost symmetric cycle of length nk−1, and with some exceptions, also an almost symmetric cycle of length nk. Consequently, D contains all orientations of cycles of length at most nk, unless D is an exception. The research was partially supported by the AGH University of Science and Technology grant No 11 420 04  相似文献   

14.
In this paper we consider the concept of the average connectivity of a digraph D defined to be the average, over all ordered pairs (u,v) of vertices of D, of the maximum number of internally disjoint directed uv paths. We determine sharp bounds on the average connectivity of orientations of graphs in terms of the number of vertices and edges and for tournaments and orientations of trees in terms of their orders. An efficient procedure for finding the maximum average connectivity among all orientations of a tree is described and it is shown that this maximum is always greater than and at most .  相似文献   

15.
In Evans function computations of the spectra of asymptotically constant-coefficient linearized operators of large systems, a problem that becomes important is the efficient computation of global analytically varying bases for invariant subspaces of the limiting coefficient matrices. In the case that the invariant subspace is spectrally separated from its complementary invariant subspace, we propose an efficient numerical implementation of a standard projection-based algorithm of Kato, for which the key step is the solution of an associated Sylvester problem. This may be recognized as the analytic cousin of a C k algorithm developed by Dieci and collaborators based on orthogonal projection rather than eigenprojection as in our case. For a one-dimensional subspace, it reduces essentially to an algorithm of Bridges, Derks and Gottwald based on path-finding and continuation methods.  相似文献   

16.
The problems of computing the maximum increase in the weight of the minimum spanning trees of a graph caused by the removal of a given number of edges, or by finite increases in the weights of the edges, are investigated. For the case of edge removals, the problem is shown to be NP-hard and an Ω(1/log k)-approximation algorithm is presented for it, where (input parameter) k > 1 is the number of edges to be removed. The second problem is studied, assuming that the increase in the weight of an edge has an associated cost proportional to the magnitude of the change. An O(n3m2 log(n2/m)) time algorithm is presented to solve it.  相似文献   

17.
A topological graph is called k -quasi-planar if it does not contain k pairwise crossing edges. It is conjectured that for every fixed k, the maximum number of edges in a k-quasi-planar graph on n vertices is O(n). We provide an affirmative answer to the case k=4.  相似文献   

18.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

19.
We prove that every digraph of circumference l has DAG‐width at most l. This is best possible and solves a recent conjecture from S. Kintali (ArXiv:1401.2662v1 [math.CO], January 2014).1 As a consequence of this result we deduce that the k‐linkage problem is polynomially solvable for every fixed k in the class of digraphs with bounded circumference. This answers a question posed in J. Bang‐Jensen, F. Havet, and A. K. Maia (Theor Comput Sci 562 (2014), 283–303). We also prove that the weak k‐linkage problem (where we ask for arc‐disjoint paths) is polynomially solvable for every fixed k in the class of digraphs with circumference 2 as well as for digraphs with a bounded number of disjoint cycles each of length at least 3. The case of bounded circumference digraphs is still open. Finally, we prove that the minimum spanning strong subdigraph problem is NP‐hard on digraphs of DAG‐width at most 5.  相似文献   

20.
We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,vN, there is no monochromatic directed path between them, and (ii) for every vertex x∈(V(D)?N), there is a vertex yN such that there is an xy-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural numberlsuch that if a digraphDisk-colored so that every directed cycle of length at mostlis monochromatic, thenDhas a kernel by monochromatic paths?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号