首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
To avoid changes in the original As species distribution in natural water after sampling, a method of immediate separation of As(V) by anion exchange at the sampling site was developed. The procedure consists of two steps. The total concentration of arsenic is determined in one part of the water sample acidified on site. Another part of the water samples is pressed through a column filled with an anion exchanger. The As(III) species that is not redox-stable remains in the effluent of the sorbents column and can be analyzed with conventional methods after stabilization by addition of conc. HNO3. As(V) is sorbed by the exchanger material. The As(V) concentration can be calculated as the difference between Assol and As(III), neglecting very low contents of methylated species. Oxidation of Fe(II) by air followed by co-precipitation of arsenic with iron hydroxide was applied in field experiments to minimize the As concentration in seepage and mining water.  相似文献   

2.
Cloud point extraction (CPE) was applied as a preconcentration step prior to graphite furnace atomic absorption spectrometry (GFAAS) determination of manganese(II) and iron(III) in water samples. After complexation with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), the analytes could be quantitatively extracted to the phase rich in the surfactant p-octylpolyethyleneglycolphenylether (Triton X-100) and be concentrated, then determined by GFAAS. The parameters affecting the extraction efficiency, such as solution pH, concentration of PMBP and Triton X-100, equilibration temperature and time, were investigated in detail. Under the optimum conditions, preconcentration of 10 ml of sample solution permitted the detection of 0.02 ng ml(-1) of Mn(II) and 0.08 ng ml(-1) of Fe(III) with enrichment factors of 31 and 25 for Mn(II) and Fe(III), respectively. The proposed method was applied to determination of trace manganese(II) and iron(III) in water samples with satisfactory results.  相似文献   

3.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Fe(III) and Fe(II) or selective determination of Fe(III) in the presence of Fe(II). The method is based on the difference in the rate of two processes; reduction of Fe(III) with Co(II) and subsequent complex formation of resulted Fe(II) with 1,10-phenanthroline, and direct complex formation between Fe(II) and 1,10-phenanthroline in pH 3 and cetyl trimethyl ammonium bromide, CTAB, micellar media. Fe(III) can be determined in the range of 0.75-5.13 mug ml(-1)with satisfactory accuracy and precision in the presence of excess Fe(II) under working conditions. The proposed method was successfully applied to the simultaneous determination of Fe(III) and Fe(II) and also to the selective determination of Fe(III) in the presence of Fe(II) in several synthetic mixtures containing different concentration ratios of Fe(III) to Fe(II).  相似文献   

4.
The chromophore eriochrome cyanine R (ECR) was used to sensitively coordinate Al(II) and Fe(II) in the presence of cetylpyridinium chloride (CPC) at pH 4.8. Trace amounts of Fe(III) can displace Al(III) from the Al(ECR)(CPC) ternary complex to form the Fe(ECR)(CPC) complex. The composition of the complexes was determined by the break point approach. The competitive displacement complexation was sensitive and highly selective, even if no masking reagent was added. An ongoing novel spectrophotometry, named the light-absorption ratio variation approach, was applied to the direct determination of Fe(III) in natural water with recovery between 92.5 and 106%. The detection limit was only 9 ng/mL Fe(III).  相似文献   

5.
We have covalently grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The resulting material was characterized by FT-IR and UV–vis spectroscopy, by TGA, XPS and SEM. It is shown to be a valuable solid-phase extraction adsorbent for the preconcentration of trace quantities of Fe(III), Cu(II) and Pb(II) ion from aqueous solution prior to their determination by ICP-OES. Various factors affectting the separation and preconcentration were investigated. The enrichment factor typically is 100. Under optimized experimental conditions, the maximum adsorption capacities for Fe(III), Cu(II) and Pb (II) are 64.5, 30.5 and 17.0?mg?g-1, respectively, the detection limits are 0.26, 0.15 and 0.18?ng?mL-1, and the relative standard deviations are <2.5% (n?=?6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Fe(III), Cu(II) and Pb (II) in water samples.
Figure
Multiwalled carbon nanotubes grafted with phenyl-iminodiacetic acid (PIDA-MWCNTs) is prepared and employed as solid phase extraction sorbent to determinate the trace Fe(III), Cu(II) and Pb (II) in water samples. The method has been applied to the preconcentration of trace amount of Fe(III), Cu(II) and Pb (II) in water samples with satisfactory results.  相似文献   

6.
The use of 1-phenyl-3-methyl-4-benzoylpyrazolone (PMBP) as extractant for separation of Fe(III) and Fe(II) and low-temperature vaporization of the Fe(III)–PMBP chelate into ICP-AES for their speciation analysis was investigated. The factors affecting the formation of Fe(PMBP)3 chelate and its vaporization behavior were investigated in detail. PMBP was used not only as the extractant for the separation of Fe(III) and Fe(II) but also as the chemical modifier for the low-temperature ETV-ICP-AES determination of iron. Under the optimized conditions, the detection limit for iron(III) and iron(II) are both 3.2?ng/mL, with relative standard deviations of 3.9 and 4.5%, respectively. The proposed method was applied to the determination of trace iron in biological standard reference materials and the species in East Lake water samples, and the results obtained were satisfactory.  相似文献   

7.
Ion-exchange sorption of palladium(II) from both concentrated aqueous hydrochloric acid solution containing Fe(III), Sn(II), Zn(II), and Cu(II) and weakly acidic concentrated aqueous ammonium chloride solution containing Zn(II) and Cu(II) was studied. The Purolite S920, Purolite S924, and Purolite S984 macroporous resins with the thiourea, thiol, and polyethylenepolyamine functional groups, respectively, were used as sorbents. Strongly basic Purolite A500 anion exchanger was also tested. The desorption of palladium(II) with aqueous ammonia, hydrochloric acid, and acidified aqueous thiourea was examined.  相似文献   

8.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples. Received: 13 March 1997 / Revised: 3 June 1997 / Accepted: 6 June 1997  相似文献   

9.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples.  相似文献   

10.
The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO3) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH ≅ 3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05–4.0 and 0.09–6.0 mg L−1, respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.  相似文献   

11.
Simultaneous determination of Fe(II) and Fe(III) was studied using partial least squares regression (PLS) and principal component regression (PCR) methods. The models were based on the difference observed in the rates of the complex formation of iron in its two oxidation states with 1,2-naphthaquinone-2-thiosemicarbazone-4-sulphonic acid (NQT4S) at pH 4.0 in cetyltrimethylammoniumbromide (CTAB) as micellar media. The results showed that simultaneous determination of Fe(II) and Fe(III) could be performed in their concentration ranges of 0.10-2.10 and 0.25-2.25 μg/ml, respectively. The models used can proceed the data with low percent relative error of prediction (i.e. <5.5%). The procedure was successfully applied for the simultaneous determination of Fe(II) and Fe(III) in some environmental samples. The method would allow the transformation of the two oxidation states of iron to be monitored overtime in a water sample.  相似文献   

12.
Changes in the nature and concentration of functional groups in the anion exchanger at oxidation of hydrogen sulfide in Fe(II)-ethylenediaminetetraacetate/anion exchanger catalytic system were studied.  相似文献   

13.
The H-point standard addition method (HPSAM) for simultaneous determination of Fe(II) and Fe(III) is described. The method is based on the difference in the rate of complex formation of iron in two different oxidation states with Gallic acid (GA) at pH 5. Fe(II) and Fe(III) can be determined in the range of 0.02–4.50 μg ml−1 and 0.05–5.00 μg ml−1, respectively, with satisfactory accuracy and precision in the presence of other metal ions, which rapidly form complexes with GA under working conditions. The proposed method was successfully applied for simultaneous determination of Fe(II) and Fe(III) in several environmental and synthetic samples with different concentration ratios of Fe(II) and Fe(III).  相似文献   

14.
Xylenol Orange immobilized on silica as a complex of iron(III) was used for the test determination of lead(II) and zinc(II) in drinking water over concentration ranges of 10–100 and 13–130 g/L, respectively. The maximum distribution coefficients were found to be 7.50 × 103 mL/g for Pb and 3.75 × 103 mL/g for Zn. The macro main trace components of water at a level of their maximum permissible concentrations caused no interference. Al(III), Fe(III), and Zn(II) in the presence of NH4F did not interfere with the determination of Pb(II), whereas lead in the presence of acetate caused no interference with the determination of Zn(II).  相似文献   

15.
Diffuse reflectance spectroscopy has been used for the study of the sorption of malonate and glycolate complexes of uranium(VI) and iron(III), present simultaneously in solution, onto the solid phase of fiber materials filled with an AB-17 anion exchanger. In the form of malonate complexes uranium(VI) is determined in 0.5 M HCl on substrate discs with immobilized Arsenazo III, while iron(III) is determined on substrate discs with potassium thiocyanate in 0.5 M HCl. The dependence of the analytical signals on the concentrations of U(VI) and Fe(III) is linear in the ranges 0.02–0.16 μg/mL; the detection limit is 0.01 μg/mL. The possibility of analysis of U(VI) and Fe(III) mixtures in ratio from 1: 5 to 5: 1 in the presence of 2-fold concentrations of Zr(IV), Th(IV), and Ti(IV), 5-fold concentrations of Bi(III), 10-fold concentrations of Cu(II), 20-fold concentrations of La(III), 100-fold concentrations of Ni(II) and Zn(II), and 200-fold concentrations of Co(II) and Ca(II) has been demonstrated. Standard color scales in the concentration range from 0.02 to 0.2 μg/mL have been used for the visual determination of uranium(VI) and iron(III).  相似文献   

16.
Sorption of Au(III), Pt(IV), Pd(II), and Rh(III) ions on ANS-80, AN-108-4 macrocellular anion exchangers and on AV-17-10P macroporous anion exchanger from hydrogen chloride media was studied in relation to HCl concentration and time. The residual concentration of matrix elements in analytical concentrates of a real object was determined and their influence on the delivery of vapors of noble metals into the cloud of the arc discharge and on their excitation in the discharge was revealed. The conditions of recovery, concentration, and atomic-emission determination of noble metals were examined. The effect of matrix elements, combined with a number of supports (NaCl, CdO, TeO3, Sb2O3), on the amplitude of analytical signals was evaluated.  相似文献   

17.
The H-point standard addition method was applied to kinetic data for simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III). The method is based on the difference in the rate of complex formation between iron in two different oxidation states and methylthymol blue (MTB) at pH 3.5 in mixed cetyltrimethylammonium bromide (CTAB) and Triton X-100 micellar medium. Fe(II) can be determined in the range 0.25-2.5 microg ml(-1) with satisfactory accuracy and precision in the presence of excess Fe(III) and other metal ions that rapidly form complexes with MTB under working condition. The proposed method was successfully applied to the simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III) in spiked real environmental and synthetic samples with complex composition.  相似文献   

18.
Pons C  Forteza R  Cerdà V 《Talanta》2005,66(1):210-217
A combination of multi-syringe flow-injection analysis (MSFIA) technique with an optical fibre reflectance sensor for the determination of iron in water samples has been developed in this work. Anion-exchange solid phase extraction (SPE) disks have been used as solid phase. Ammonium thiocyanate has been chosen as chromogenic reagent for Fe(III). The complex Fe[SCN]63− is retained onto the SPE disk and spectrophotometrically detected at 480 nm. The complex is eluted with 0.25 mol l−1 hydrochloric acid in 75% ethanol. Total iron can be determined by oxidising Fe(II) to Fe(III) with hydrogen peroxide.A mass calibration was run within the range of 0.4-37.5 ng. The detection limit (3sb/S) was 0.4 ng. The repeatability (RSD), calculated from 9 replicates using 0.5 ml injections of a 25 μg l−1 concentration, was 3.6%. The repeatability between five anion-exchange disks was 5.4%. An injection throughput of 7 injections per hour for a sampling volume of 1 ml has been achieved.The applicability of the proposed methodology in natural water samples has been proved.The properties of anion-exchange and chelating SPE disks have been studied and compared.  相似文献   

19.
Ion-exchange absorptiometry combined with flow analysis has been applied to the determination of trace amounts of molybdenum(VI) in natural water and rock. By using a pretreatment column packed with Sephadex G-25 gel, molybdenum(VI) in a sample solution can be sorbed selectively on the gel at pH 3.5. The molybdenum(VI) in the column was desorbed with EDTA as the molybdenum(VI)-EDTA complex, and the solution was introduced into a Tiron solution stream. The yellow complex formed between molybdenum(VI) and Tiron in the flow system was then concentrated on a QAE-Sephadex A-25 anion exchanger packed in a flow-through silica micro-cell. The attenuation of incident light by the molybdenum(VI)-Tiron complex on the anion exchanger in the cell was continuously recorded with a spectrophotometer at 410 nm. The complex on the anion exchanger was easily desorbed with sodium nitrate, so the flow-through cell could be used repeatedly. The minimum amount that could be detected corresponded to 15 ng of molybdenum(VI). Molybdenum(VI) in three or four sample solutions could be determined within 1 h.  相似文献   

20.
Summary: Three pyridine strong base anion exchangers as beads were obtained by quaternization reactions of a 4-vinylpyridine : 8% divinylbenzene copolymer of gel type. These resins possess methyl / ethyl / butyl radicals as substituents on N+ atoms and have exchange capacities of 4.80 mEq/g and 2.10 mEq/mL. For pyridine strong base anion exchangers, the behaviours in the retention processes of Cr(VI) as oxyanions and Ga(III) as [GaCl4] complex anion were evaluated with the bath method. All the resins exhibited retention properties, but the retained amounts of the metal cations are different as a function of the alkyl length as substituent on N+ atoms and the complex anion nature. Thus, Cr(VI) oxyanions are best retained by the resin with  CH3 as substituent on N+ atoms while [GaCl4] complex anion by the resin with  C4H9 as substituent on N+ atoms. By aminolysis reaction of an ethylacrylate : acrylonitrile : divinylbenzene copolymer as beads of macroporous type with NH2OH · HCl in the presence of C2H5OH a new chelating ion exchanger was performed which contains both amidoxime and hydroxamic acid functional groups. This ion exchanger has the retention property for different metal cations but its retention capacities values are strongly dependent of the nature of metal cation and the counterion as well as pH of the solution. Thus, in the static conditions Zn(II) cation with NOequation/tex2gif-stack-1.gif anion as counterion is retained with the best result at pH = 5. As an example, for the aqueous metal cation solution of 10−2 M concentration for Zn(NO3)2 the resin possess at equilibrium a retention capacity of 6.70 mmol Zn/g dry resin and for Cu(II) from Cu(NO3)2 solution of same concentration, the retention capacity is 0.22 mmol Cu/g dry resin and Fe(III) from Fe(NO3)3 solution is not retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号