首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces.  相似文献   

2.
Adsorption and deposition of asphaltenes onto differently coated (hydrophilic surfaces: silica, titanium, alumina, and a noncommercial tailor‐made FeOx) quartz crystals from heptane/toluene (1∶1) and toluene solutions have been studied with the quartz crystal microbalance method with dissipation measurements (QCM‐D). The results show that the adsorbed mass is related to the solubility state of asphaltenes (aromaticity of the solvent), their origin (aggregate size in solution) and very little to the hydrophilicity of the investigated crystal. Adsorption/deposition of asphaltenes depends on their solubility. We found two cases: Either the asphaltenes are solubilized, or the asphaltenes are partly solubilized and partly precipitated. In the former case, asphaltenes are bounded very tightly to the surface and poorly for the latter. The change in solution composition due to decrease in asphaltene solvency causes formation of a variety of asphaltenes species. The results also were compared and discussed in relation to adsorption onto particles, determined with the UV depletion method. The study shows that QCM‐D method is a very useful tool to study the mechanisms and the effects of solvency of asphaltenes. We discuss and compare the different techniques.  相似文献   

3.
The adsorption behavior of ethyl(hydroxyethyl) cellulose EHEC and hydrophobically modified EHEC (HM-EHEC) at hydrophilic and hydrophobic surfaces has been studied using surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) methods. The adsorbed amounts measured with the different methods were different due to large amounts of water in the films. The slow adsorption process made it reasonable to assume a continuous polymer reconfiguration process at the surface. This was mostly seen for HM-EHEC at the hydrophobic surface, where a more flexible structure was adopted during the adsorption process. A cross-linking agent was seen to truly interpolymer cross-link EHEC at the hydrophilic surface and HM-EHEC at the hydrophobic surface. For EHEC at a hydrophobic surface and for HM-EHEC at a hydrophilic surface, the polymers adsorbed in an individually phase-separated manner, making an interpolymer cross-linking reaction unsuccessful.  相似文献   

4.
Nanobubbles give evidence of incomplete wetting at a hydrophobic interface   总被引:1,自引:0,他引:1  
The appearance of a hydrophobic surface, namely a crystalline (111) Si wafer coated with a thick soft polystyrene film, and the morphological changes along this interface depending on the polarity of an adjoining liquid phase were studied with magnetic tapping mode atomic force microscopy. Interfacially associated nanobubbles of decreasing size and number are observed as the hydrophobicity of the subphase increases. The disturbance of the water structure in the contact region induces the formation of nanobubbles. The topology of the interface is visualized, starting with the dry polymer under normal atmosphere conditions and observing the changes as air is replaced by a series of liquids. With water, the surface coverage of the substrate with bubbles is almost a close-packed configuration. The bubble shape is well approximated by spherical caps of a rather low aspect ratio. The Gaussian size distributions of bubble shape parameters are discussed. The contact angle of the nanobubbles is substantially smaller than the corresponding number measured for a macroscopic droplet. This apparent discrepancy might be resolved if the nanobubbles were assumed to exist along the interface as a connecting sublayer between a depleted water film at the hydrophobic polymer surface and an adsorbed macrodroplet.  相似文献   

5.
Quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were used as the tools to study the adsorption of bacteria onto surfaces of silica and polystyrene coated with materials related to papermaking. Cationic polyelectrolytes used as fixatives and retention aids in paper industry were found to promote irreversible adsorption of the ubiquitous white water bacterium, Pseudoxanthomonas taiwanensis, onto model surfaces of cellulose (pH 8). The high charged low molecular weight polyelectrolyte, poly(diallyldimethyl) ammonium chloride (pDADMAC) adsorbed to silica surface as a flat and rigid layer, whereas the low charged cationic polyacryl amide (C-PAM) of high molecular weight adsorbed as a thick and loose layer. AFM images showed that the polyelectrolytes accumulated as layers around each bacterial cell. In the presence of wood hemicellulose (O-acetyl-galactoglucomannan) the bacteria adsorbed massively, as large, tightly packed rafts (up to 0.05mm in size) onto the polystyrene crystal surface coated with wood extractives (pH 4.7). AFM and FESEM micrographs also showed large naked areas (with no bacteria) in between the bacterial rafts on the crystal surface. In this case, QCM-D only incompletely responded to the massiveness of the bacterial adsorption. The results indicate that cationic polymers can be used to increase the retention of bacteria from the process water onto the fibre web and that, depending on the balance between hemicelluloses and wood extractives and pH of the process waters, bacteria can be drawn from process waters onto surfaces.  相似文献   

6.
The nature of hexaethylene glycol mono-n-tetradecyl ether (C(14)EO(6)) layers adsorbed onto different model surfaces was systematically investigated by means of QCM-D (quartz crystal microbalance-dissipation) and ellipsometry. The amount of non-ionic surfactant adsorbed is determined both at hydrophilic and hydrophobic surfaces. In particular, the substrates employed were hydrophilic silica, hydrophobized silica (using dimethyldichlorosilane), and hydrophobized gold surfaces (using 10-thiodecane and 16-thiohexadecane). It was shown that the frequency shift obtained from the QCM-D experiments results in an overestimation of the adsorbed mass. This is attributed to two different effects, viz. water that is coupled to the adsorbed layer due to hydration of the polar region of the surfactant and second water that for other reasons is trapped within the adsorbed layer. Furthermore, from the ellipsometry data the adsorbed layer thickness is determined. By combining the thickness information and the dissipation parameter (obtained from the QCM-D experiments), we note that the dissipation parameter is insufficient in describing the viscoelastic character of thin surfactant films.  相似文献   

7.
Protein adsorption is of major and widespread interest, being useful in the fundamental understanding of biological processes at interfaces through to the development of new materials. A number of techniques are commonly used to study protein adhesion, but few are directly quantitative. Here we describe the use of Nano Orange, a fluorometric assay, to quantitatively assess the adsorption of bovine fibrinogen and albumin onto model hydrophilic (OH terminated) and hydrophobic (CH3 terminated) surfaces. Results obtained using this method allowed the calibration of previously unquantifiable data obtained on the same surfaces using quartz crystal microbalance measurements and an amido black protein assay. Both proteins were found to adsorb with higher affinity but with lower saturation levels onto hydrophobic surfaces. All three analytical techniques showed similar trends in binding strength and relative amounts adsorbed over a range of protein concentrations, although the fluorometric analysis was the only method to give absolute quantities of surface-bound protein. The versatility of the fluorometric assay was also probed by analyzing protein adsorption onto porous superhydrophobic and superhydrophilic surfaces. Results obtained using the assay in conjunction with these surfaces were surface chemistry dependent. Imbibition of water into the superhydrophilic coatings provided greater surface area for protein adsorption, although the protein surface density was less than that found on a comparable flat hydrophilic surface. Superhydrophobic surfaces prevented protein solution penetration. This paper demonstrates the potential of a fluorometric assay to be used as an external calibration for other techniques following protein adsorption processes or as a supplemental method to study protein adsorption. Differences in protein adsorption onto hydrophilic vs superhydrophilic and hydrophobic vs superhydrophobic surfaces are highlighted.  相似文献   

8.
The adsorption of charged dendrigraft (arborescent) copolymers of different generations (G1, G2) and side chain molecular weights (Mn ≈ 5000 or 30,000) on silica surfaces in water, was monitored by the quartz crystal microbalance dissipation (QCM-D) technique. The topology of the adsorbed copolymers on mica was also investigated by AFM measurements. The PS-P2VP [polystyrene-graft-poly(2-vinylpyridine)] copolymers readily interact with a silica or mica surface and form a thin layer in acidic water (pH 2) due to the positively charged P2VP shell branches. The adsorbed arborescent PS-P2VP films expanded and collapsed reversibly in water upon cycling between low and high pH values, respectively. As the generation number increased, the density of copolymer molecules adsorbed onto the surface decreased due to stronger intermolecular electrostatic repulsions. The adsorption density also decreased significantly for copolymers with longer P2VP chains due to their more expanded conformation on the surface.  相似文献   

9.
Hydrophilic silicon wafers are studied against aqueous solutions of hexadecyl trimethyl ammonium bromide (CTAB) at concentrations between 0.05 mM up to 1 mM (CMC). AFM studies show that nanobubbles are formed at concentrations up to 0.4 mM. From 0.5 mM upward, no bubbles could be detected. This is interpreted as the formation of hydrophobic domains of surfactant aggregates, becoming hydrophilic at about 0.5 mM. The high contact angle of the nanobubbles (140-150° through water) indicates that the nanobubbles are located on the surfactant domains. A combined imaging and colloidal probe AFM study serves to highlight the surfactant patches adsorbed at the surface via nanobubbles. The nanobubbles have a diameter between 30 and 60 nm (after tip deconvolution), depending on the surfactant concentration. This corresponds to a Laplace pressure of about 30 atm. The presence of the nanobubbles is correlated with force measurements between a silica probe and a silicon wafer surface. The study is a contribution to the better understanding of the short-range attraction between hydrophilic surfaces exposed to a surfactant solution.  相似文献   

10.
This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling.  相似文献   

11.
Nanostructured particle coated surfaces, with hydrophobized particles arranged in close to hexagonal order and of specific diameters ranging from 30 nm up to 800 nm, were prepared by Langmuir-Blodgett deposition followed by silanization. These surfaces have been used to study interactions between hydrophobic surfaces and a hydrophobic probe using the AFM colloidal probe technique. The different particle coated surfaces exhibit similar water contact angles, independent of particle size, which facilitates studies of how the roughness length scale affects capillary forces (previously often referred to as "hydrophobic interactions") in aqueous solutions. For surfaces with smaller particles (diameter < 200 nm), an increase in roughness length scale is accompanied by a decrease in adhesion force and bubble rupture distance. It is suggested that this is caused by energy barriers that prevent the motion of the three-phase (vapor/liquid/solid) line over the surface features, which counteracts capillary growth. Some of the measured force curves display extremely long-range interaction behavior with rupture distances of several micrometers and capillary growth with an increase in volume during retraction. This is thought to be a consequence of nanobubbles resting on top of the surface features and an influx of air from the crevices between the particles on the surface.  相似文献   

12.
This study addresses the design of protein-repellent gold surfaces using hydroxyethyl- and ethyl(hydroxyethyl) cellulose (HEC and EHEC) and hydrophobically modified analogues of these polymers (HM-HEC and HM-EHEC). Adsorption behavior of the protein immunoglobulin G (IgG) onto pure gold and gold surfaces coated with cellulose polymers was investigated and described by quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and contact angle measurements (CAM). Surfaces coated with the hydrophobically modified cellulose derivatives were found to significantly outperform a reference poly(ethylene glycol) (PEG) coating, which in turn prevented 90% of non-specific protein adsorption as compared to adsorption onto pure gold. HEC and EHEC prevented around 30% and 60% of the IgG adsorption observed on pure gold, while HM-HEC and HM-EHEC were both found to completely hinder biofouling when deposited on the gold substrates. Adsorption behavior of IgG has been discussed in terms of polymer surface coverage and roughness of the applied surfaces, together with hydrophobic interactions between protein and gold, and also polymer-protein interactions.  相似文献   

13.
Amino acids provide useful foods, medicines, health foods, and nutritional supplements. We studied the morphology control of alanine, an amino acid. We also studied the effects of amino acid addition on the dispersion stability of gold nanoparticles. We then studied hybridization between alanine crystals and arginine-capped gold nanoparticles. Alanine crystal growth in a supersaturated alanine solution was found to increase linearly over time, and alanine crystal growth stopped as supersaturation decreased. Alanine crystals with arginine grew toward the c-axis because arginine was adsorbed onto the face (120) of alanine crystals. Absorption wavelengths of colloidal solutions changed for gold nanoparticles with arginine, suggesting that arginine was adsorbed onto gold nanoparticles. The change in alanine crystal morphology was the same for alanine crystals with arginine-capped gold nanoparticles in that it grew toward the c-axis. Alanine crystals contained arginine-capped gold nanoparticles toward the c-axis.  相似文献   

14.
Fibronectin displacement at polymer surfaces   总被引:1,自引:0,他引:1  
The interactions of fibronectin with thin polymer films are studied in displacement experiments using human serum albumin. Fibronectin adsorption and exchange on two different maleic anhydride copolymer surfaces differing in hydrophobicity and surface charge density have been analyzed by quartz crystal microbalance and laser scanning microscopy with respect to adsorbed amounts, viscoelastic properties, and conformation. Fibronectin is concluded to become attached onto hydrophilic surfaces as a "softer", less rigid protein layer, in contrast to the more rigid, densely packed layer on hydrophobic surfaces. As a result, the fibronectin conformation is more distorted on the hydrophobic substrates together with remarkably different displacement characteristics in dependence on the adsorbed fibronectin surface concentration and the displacing albumin solution concentration. While the displacement kinetic remains constant for the strongly interacting surface, an acceleration in fibronectin exchange is observed for the weakly interacting surface with increasing fibronectin coverage. For displaced amounts, no change is determined for the hydrophobic substrate, in contrast to the hydrophilic substrate with a decrease of fibronectin exchange with decreasing coverage leading finally to a constant nondisplaceable amount of adsorbed proteins. Furthermore, the variation of the albumin exchange concentration reveals a stronger dependence of the kinetic for the weakly interacting substrate with higher rates at higher albumin concentrations.  相似文献   

15.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

16.
固液界面纳米气泡的研究进展   总被引:6,自引:0,他引:6  
张雪花  胡钧 《化学进展》2004,16(5):673-681
根据经典热力学理论,在水中纳米级的气泡难以长期稳定存在.近年来却有大量的实验结果表明固液界面存在纳米气泡,原子力显微镜也直接观察到了纳米气泡.有关纳米气泡的研究具有巨大的理论和实际意义,它对表面科学、流体动力学、生物科学以及一些应用领域都有深远的影响.纳米气泡会引起流体在界面的滑移,减少流动阻力,并与表面粘附、胶体分散、矿石浮选、废渣处理等方面密切相关.目前关于纳米气泡的研究才刚刚开始,对于它的基本物化性质的了解还不多,但其重要性已经引起相关领域的极大关注.本文综述了从提出纳米气泡存在一直到实验证明的过程、纳米气泡的形成机制和形貌、分布特征等基本性质以及纳米气泡的存在对疏水长程作用和流体滑移的影响,并阐述了生物学中一些与纳米气泡存在有关的问题.  相似文献   

17.
We have investigated the bonding of water molecules to the surfaces of ZnS nanoparticles (approximately 2-3 nm sphalerite) using temperature-programmed desorption (TPD). The activation energy for water desorption was derived as a function of the surface coverage through kinetic modeling of the experimental TPD curves. The binding energy of water equals the activation energy of desorption if it is assumed that the activation energy for adsorption is nearly zero. Molecular dynamics (MD) simulations of water adsorption on 3 and 5 nm sphalerite nanoparticles provided insights into the adsorption process and water binding at the atomic level. Water binds with the ZnS nanoparticle surface mainly via formation of Zn-O bonds. As compared with bulk ZnS crystals, ZnS nanoparticles can adsorb more water molecules per unit surface area due to the greatly increased curvature, which increases the distance between adjacent adsorbed molecules. Results from both TPD and MD show that the water binding energy increases with decreasing the water surface coverage. We attribute the increase in binding energy with decreasing surface water coverage to the increasing degree of surface under-coordination as removal of water molecules proceeds. MD also suggests that the water binding energy increases with decreasing particle size due to the further distance and hence lower interaction between adsorbed water molecules on highly curved smaller particle surfaces. Results also show that the binding energy, and thus the strength of interaction of water, is highest in isolated nanoparticles, lower in nanoparticle aggregates, and lowest in bulk crystals. Given that water binding is driven by surface energy reduction, we attribute the decreased binding energy for aggregated as compared to isolated particles to the decrease in surface energy that occurs as the result of inter-particle interactions.  相似文献   

18.
The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.  相似文献   

19.
We demonstrate that increasing the hydrophobic environment around the charge center of a polyelectrolyte (PE) not only decreases the water content of an adsorbed PE layer but can even dewater up to ~50% of an initially hydrated substrate. The results of this work are expected to yield new stratagies to dewater PE systems and have potential applications in mineral recovery, paper manufacturing, and biomedical materials. Adsorption of a series of cationically derivatized dextran polyelectrolytes onto sulfated nanocrystalline cellulose (SNC) has been studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). Synthesized samples of (N,N-dimethylamino)ethyldextran (DMAE-Dex), (N,N-diethylamino)ethyldextran (DEAE-Dex), and (N,N-diisopropylamino)ethyldextran (DIAE-Dex) had degrees of substitution (DS) ranging from 0.05 to 0.82. DMAE-Dex, DEAE-Dex, and DIAE-Dex all showed decreasing adsorption onto SNC and decreasing water content of the adsorbed film with increasing DS. Additionally, DEAE-Dex and DIAE-Dex films adsorbed onto SNC contained less water than DMAE-Dex films with the same DS. Interestingly, QCM-D results for high DS DIAE-Dex adsorbed onto SNC revealed mass loss, whereas SPR results clearly showed DIAE-Dex adsorbed. These observations were consistent with dehydration of the SNC substrate. This study indicates that the water content of the substrate could be tailored by controlling the DS and hydrophobic character of the adsorbed polyelectrolytes.  相似文献   

20.
In order to elaborate alternate layer-by-layer assembly as a means to prepare ultrathin films, details of conventional polyion assemblies have been quantitatively analyzed by quartz crystal microbalance (QCM) technique with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The alternate adsorption of poly(styrenesulfonate) (PSS) and poly(allylamine) (PAM) onto oppositely-charged surfaces displayed the pseudo first-order kinetics and was saturated within 10–20 min at pH 3 and 22°C. It was revealed that drying at every step increased the thickness of adsorbed films due to enhanced surface roughness of the films. Therefore, frequent drying is not profitable for preparing films in a good quality. Non-contact AFM observation revealed that drying of the film with nitrogen stream, forced polymer chains to align to one direction with increasing surface roughness. In contrast, water washing between the consecutive adsorptions was effective for successful alternate adsorption. About 10% of an adsorbed polyion layer was removed by 5-min water washing probably due to removal of the loosely-attached materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号