首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The metathesis reaction of the magnesium complex [(dpp-BIAN)2−Mg2+(THF)3] (dpp-BIAN is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with one equivalent of AlCl3 in toluene gave the [(dpp-BIAN)2−AlCl2][Mg2Cl3(THF)6]+ complex (1). Reduction of dpp-BIAN with aluminum metal in the presence of AlCl3 and AlI3 in toluene and diethyl ether afforded the radical-anionic complex [(dpp-BIAN)AlCl2] (2) and the dianionic complexes [(dpp-BIAN)2−AlI(Et2O)] (3) and [(dpp-BIAN)2−AlCl(Et2O)] (4), respectively. Compounds 1–4 were isolated in the crystalline state and characterized by IR spectroscopy and elemental analysis. The structures of compounds 1–3 were established by X-ray diffraction. Compound 2 was characterized by ESR spectroscopy. Compounds 3 and 4 were studied by 1H and 13C NMR spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 409–415, March, 2006.  相似文献   

2.
The reactions of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN, 1) with tri-iso-butylaluminum, triethylgallium or trimethylindium give the novel amido-imine complexes (Bui—dpp-BIAN)AlBui 2 (4), (Et—dpp-BIAN)GaEt2 (5), and (Me—dpp-BIAN)InMe2 (6), respectively. The reaction of (dpp-BIAN)AlI(Et2O) (7) with allyl bromide affords analogous chiral amido-imine derivative (All—dpp-BIAN)AlBrI (8). Hydrolysis of 8 affords the amino-imino compound (All—dpp-BIAN)H (9). The new compounds 46, 8, and 9 have been characterized by 1H NMR and IR spectroscopy. The molecular structures of 5, 6, and 9 were determined by single crystal X-ray analysis.  相似文献   

3.
Oxidation of ytterbium(II) complex (dpp-BIAN)Yb(DME)2 (1) with dpp-BIAN affords an ionic compound [(dpp-BIAN)2Yb]?[(dpp-BIAN)Yb(DME)2]+ (2) (dpp-BIAN = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene), in which the oxidation states of the metals in anionic and cationic counterparts are different. Structurally related lanthanum(III) complex [(dpp-BIAN)2La]?[(dpp-BIAN)La(DME)2]+ (3) has been prepared reacting excess of metallic lanthanum with dpp-BIAN. Compound [(dpp-BIAN)2La]?[K(Et2O)4]+ (4) has been isolated from the reaction of LaI3 with three molar equivalents of potassium and one molar equivalent of dpp-BIAN in diethyl ether. The reaction of SmI2 with dpp-BIAN and potassium affords complex [(dpp-BIAN)2Sm]?[K(C6H6)]+ (5). Treatment of compound 5 with 0.5 molar equivalent of iodine produces neutral complex (dpp-BIAN)2Sm (6). Molecular structures of complexes 26 have been determined by X-ray crystallography.  相似文献   

4.
Reactions of diimines dtb-BIAN and dph-BIAN with GeCl2 afford germanium(II) complexes with radical-anionic ligands, (dtb-BIAN)GeCl (5) and (dph-BIAN)GeCl (6a), respectively, where dtb-BIAN is 1,2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene and dph-BIAN is 1,2-bis[(2-biphenyl)imino]acenaphthene. The latter reaction gives 6a along with [(dph-BIAN)GeCl]+[GeCl3] (6b). The reactions of tin(II) and antimony(III) chlorides with dtb-BIAN and dpp-BIAN produce complexes of these halides with neutral coordinated diimines, viz., (dtb-BIAN)SnCl2 (7) and (dpp-BIAN)SbCl3 (8) (dpp-BIAN is 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene). Paramagnetic complexes 5 and 6a were studied by ESR spectroscopy. Diamagnetic compounds 7 and 8 were characterized by 1H NMR spectroscopy. The structures of complexes 5, 6a,b, 7, 8, and (dpp-BIAN)Ge (9) were established by X-ray diffraction analysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 71–80, January, 2006.  相似文献   

5.
Four- and five-coordinate magnesium and calcium complexes containing two diimine radical-anion ligands with compositions (dpp-BIAN)2Mg (1), (dpp-BIAN)2Ca (2), (dtb-BIAN)2Mg (3), and (dtb-BIAN)2Ca(THF) (4) (dpp-BIAN is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene and dtb-BIAN is 1,2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene) were synthesized. At 120 K, the ESR spectra of complexes 1–4 in a toluene matrix show signals characteristic of biradical derivatives. The molecular structure of compound 2 was established by X-ray diffraction analysis. At 293 K, the magnetic moments of compounds 1, 2, 3, and 4 are 2.55, 2.57, 2.76, and 2.79 μB, respectively, which are indicative of the presence of two unpaired electrons localized on the ligands.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2051–2055, October, 2004.  相似文献   

6.
The reaction of the redox active 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) and iron(II) iodide in acetonitrile led to a new complex [(dpp-BIAN)FeIII2] (1). Molecular structure of 1 was determined by the single crystal X-ray diffraction analysis. The spin state of the iron cation in complex 1 at room temperature and the magnetic behavior of 1 in the temperature range of 2–300 K were studied using Mossbauer spectroscopy and magnetic susceptibility measurements, respectively. The neutral character of dpp-BIAN in 1 was confirmed by IR and UV spectroscopy. The electrochemistry of 1 was studied in solution and solid state using cyclic voltammetry. The generation of the radical anion form of the dpp-BIAN ligand upon reduction of 1 in a CH2Cl2 solution was monitored by EPR spectroscopy.  相似文献   

7.
Oxidation of N,N′-bis(2,6-diisopropylphenyl)acenaphthylene-1,2-diamine (dpp-BIAN)H2 with silicon tetrachloride or mercury(II) chloride affords the [(dpp-BIAN)H2+[Cl] compound. The corresponding iodine derivative, [(dpp-BIAN)H2+[I], was prepared by hydrolysis of the reaction products of the magnesium complex (dpp-BIAN)Mg(THF)3 with tetraiodosilane. X-ray diffraction study demonstrated that the [(dpp-BIAN)H2]·+ radical cation in these compounds chelates the corresponding halide anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 436–440, March, 2006.  相似文献   

8.
The reactions of the acenaphthenediimine complex (dpp-BIAN)Mg(thf)3 (1) (dpp-BIAN is 1,2-bis{ (2,6-diisopropylphenyl)imino}acenaphthene) with various chlorine-, bromine-, and iodine-containing reagents afforded the unsymmetrical compounds [(dpp-BIAN)MgCl(thf)]2 (6), [(dpp-BIAN)MgBr(thf)]2 (7), and (dpp-BIAN)MgI(DME) (8). The reaction of complex 1 with Me3SiCl in THF is accompanied by the cleavage of the THF molecule to form [{dpp-BIAN(CH2)4OSiMe3}MgCl]2 (9), in which the trimethylsilanyloxybutyl group is bound to one of the carbon atoms of the diimine fragment. The reaction of complex 1 with Me2NCH2CH2Cl in THF produces the [dpp-BIAN(H)(CH2)2NMe2] compound (10) containing no magnesium. Paramagnetic complexes 6–8 were characterized by ESR spectroscopy. Diamagnetic compounds 9 and 10 were studied by 1H and 13C NMR spectroscopy. The molecular structures of complexes 6–10 were established by X-ray diffraction analysis. In the crystalline state, compounds 6, 7, and 9 exist as halogen-bridged dimers. In all magnesium derivatives, BIAN serves as a chelate ligand.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2641–2651, December, 2004.  相似文献   

9.
The reactions of iron diiodide with one and two equivalents of the monopotassium salt of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) in diethyl ether gave the complexes [(dpp-BIAN)FeI]2 (1) and (dpp-BIAN)2Fe (2), respectively. The bis-ligand complex (tms-BIAN)2Fe (3) was synthesized by the exchange reaction of the monosodium salt of 1,2-bis(trimethylsilylimino)acenaphthene (tms-BIAN) with iron diiodide. The reaction of FeI2 with tms-BIAN affords the chelate complex (tms-BIAN)FeI2 (4), whereas the reaction of FeBr2·2H2O with tms-BIAN is accompanied by elimination of trimethylsilyl groups to form the tris-ligand acenaphthene-1,2-diimine complex [(H2BIAN)3Fe][FeBr3·THF]2 (5) containing two types of iron ions. Compounds 1–5 were characterized by IR spectroscopy and elemental analysis. The molecular structures of 1–5 were determined by single-crystal X-ray diffraction. For high-spin complexes 1–3, the temperature-dependent magnetic susceptibilities were measured in the range of 4–300 K.  相似文献   

10.
Hydrolysis of magnesium complexes containing the dianionic acenaphthenediimine ligands, (dpp-BIAN)Mg(thf)3 (1), (dph-BIAN)Mg(thf)3 (2), and (dtb-BIAN)Mg(thf)2 (3) (dpp-BIAN is 1,2-bis{ (2,6-diisopropylphenyl)imino}acenaphthene; dph-BIAN is 1,2-bis{(2-diphenyl)imino}acenaphthene; dtb-BIAN is 1,2-bis{(2,5-di-tert-butylphenyl)imino}acenaphthene), affords the corresponding diamines (dpp-BIAN)H2 (4), (dph-BIAN)H2(Et2O) (5), and (dtb-BIAN)H2 (6). Compounds 4 and 5 were isolated in the crystalline state and characterized by UV-Vis, IR, and 1H NMR spectroscopy. Partial hydrolysis of (dpp-BIAN)Na2(Et2O)3 gave the crystalline (dpp-BIAN)HNa(Et2O)2 complex (7), which was also characterized by spectroscopic methods. The structures of compounds 5 and 7 and free diimine dpp-BIAN were established by X-ray diffraction analysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2634–2640, December, 2004.  相似文献   

11.
The complexes Na(Et2O)(dpp-BIAN)AlEt2 (5) and Na(η6-C6H6)(dpp-BIAN)AlEt2 (6) were synthesized by reactions of the disodium salts of dpp-BIAN (dpp-BIAN is 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene) with 1 equiv. of Et2AlCl in diethyl ether and benzene, respectively. The structures of both complexes were established by X-ray diffraction. In molecules 5 and 6, diethylaluminum is chelated by the dianionic dpp-BIAN ligand. The sodium cations in molecules 5 and 6 are located above the plane of the diimine fragments and coordinate the Et2O or benzene molecule, respectively. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1702–1707, September, 2007.  相似文献   

12.
The reactions of the disodium salt of the 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN) ligand with one equivalent of Me2AlCl in diethyl ether, toluene, and benzene produced the complexes [Na(Et2O)2(dpp-BIAN)AlMe2] (1), [Na(eta6-C7H8)(dpp-BIAN)AlMe2] (2) and [Na(eta6-C6H6)(dpp-BIAN)AlMe2] (3), respectively. Recrystallization of 1 from hexane afforded solvent-free [{Na(dpp-BIAN)AlMe2}n] (4) or [Na(Et2O)(dpp-BIAN)AlMe2] (5) depending on the temperature of the solvent. The molecular structures of 1-5 have been determined by single-crystal X-ray diffraction. The sodium cation coordinates either one of the naphthalene rings (1) or the diimine part of the dpp-BIAN ligand (2-5). In the complexes 2 and 3, the sodium cation additionally coordinates the toluene (2) or benzene molecule (3) in an eta6-fashion.  相似文献   

13.
The crystal structures of tetrabromocobaltate(II) and tetrabromomanganate(II) salts of general formula [(C2H5)4N]2[CoBr4] (1) and [(C4H9)4N]2[MnBr4] (2) were determined. The manganese and cobalt cations are four-coordinated by bromide anions and they adopt a slightly distorted tetrahedral coordination. In the structure of both compounds there are neither hydrogen bonds nor any unusual short-range intermolecular interactions. Magnetic measurements of the powdered samples gave negative values of the Weiss constants equal to −4.9 and −1.1 K for (1) and (2), respectively, which suggest antiferromagnetic interactions to be transferred within the crystal lattice.  相似文献   

14.
Ru3(CO)12 has been reacted with the compounds hex-1-en-3-yne [EtC≡CCH=CH2], 2-methyl-hex-1-en-3-yne [EtC≡CC(=CH2)CH3] and with 3(ethoxy-silyl)propyl isocyanate [(EtO)3Si(CH2)3NCO] and the compound tb [(EtO)3Si(CH2)3NHC(=O)OCH2C≡CCH2OC(=O)NH(CH2)3Si(OEt)3] in hydrocarbon solution. Some reactions in CH3OH/KOH solution (followed by acidification) have also been performed. The main products of the reactions with ene-ynes are the clusters Ru3(CO)6(μ-CO)2L2 (L = C6H8, C7H10) and their demolition products, the “ferrole” Ru2(CO)6L2 complexes. One of the isomers of Ru3(CO)6(μ-CO)2L2, and Ru2(CO)6L2 (L = C7H10) have been reacted with vinyl-triethoxysilane [(EtO)3SiCH=CH2]: these reactions did not afford complexes containing new carbon–carbon bonds or triethoxy-silyl groups. Only polymerization of vinyl-triethoxysilane occurred. The reactions of Ru3(CO)12 with triethoxysilyl-propyl-isocyanate and tb (in the presence of Me3NO) lead to the same products, that is the isomeric complexes (μ-H)Ru3(CO)9[C=N(H)(CH2)3Si(OEt)3] with a “perpendicular” ligand (complex 3, as proposed on the basis of spectroscopic results) and (μ-H)Ru3(CO)9[HC=N(CH2)3Si(OEt)3] with a “parallel” ligand (complex 4, as confirmed by a X-ray analysis). The reaction pathways leading to these products are discussed. Complex 4 has been reacted with tetraethyl orthosilicate and the resulting material has been characterized. These reactions are part of a study on the synthesis of inorganic-organometallic materials through sol–gel techniques. This paper is dedicated to Prof. Gunther Schmid in the occasion of his 70th birthday.  相似文献   

15.
Two isostructural crown-like heteroselenometallic cluster compounds, [Et4N]4[(μ5-WSe4)(CuX)5(μ-X)2] (X = Cl 1, Br 2), were prepared from the reactions of [Et4N]2[WSe4] with CuX and [Et4N]X· xH2O in the presence of 2-picoline and characterized by single-crystal diffraction analysis. The [(μ5-WSe4)(Cu-X)5(μ-X)2]4− anions in the cluster compounds consists of five CuX fragments coordinated to the five edges of the tetrahedral [WSe4]2− moiety along with two bridging halides connected to each of the two pairs of the symmetric copper atoms, exhibiting a novel crown-like core structure. The nonlinear optical absorption and refraction of cluster compound 2 were determined to be α2 = 6.15 × 10−10 m/W and n 2 = 4.18 × 10−11 esu, respectively.  相似文献   

16.
The complexes (dpp-bian)Mg(thf)3, (dpp-bian)Ca(thf)4 and (dpp-bian)Mg(pyr)3 (dpp-bian is the 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene dianion; pyr is the pyrrolidine) catalyze the addition of pyrrolidine to 2-vinylpyridine at room temperature. The compound (dppbian)Mg[N(SiMe3)2] containing a dpp-bian radical anion catalyzes the addition of pyrrolidine to styrene at 60 °C. The dpp-bian radical anion lithium-sodium salt [(dpp-bian)Li{N-(SiMe3)2}][Na(C7H8)] is an active catalyst of the addition of pyrrolidine to styrene and isoprene at 60 °C. In all the case, the content of the catalyst was from 1 to 2 mol.%. For styrene and 2-vinylpyridine, the reactions proceeded with the formation of anti-Markovnikov addition product, while 1,4-addition product was obtained in the case of isoprene.  相似文献   

17.
Radical-ion salts bis(biphenyl)chromium(i) 1,4-di(2-cyanoisopropyl)-1,4-dihydrofulleride [(Ph2)2Cr][1,4-(CMe2CN)2C60]−· and bis(biphenyl)chromium(i) 1-(2-cyanoisopropyl)-1,2-dihydrofulleride [(Ph2)2Cr][1,2-(CMe2CN)(H)C60]−·, the salt bis(biphenyl)chromium(i) (2-cyanoisopropyl)fulleride [(Ph2)2Cr][(CMe2CN)C60], and neutral 1-(2-cyanoisopropyl)-1,2-dihydrofullerene 1,2-(CMe2CN)(H)C60 have been synthesized for the first time. The compounds [(Ph2)2Cr][1,4-(CMe2CN)2C60]−· and [(Ph2)2Cr][1,2-(CMe2CN)(H)C60]−· decompose in THF to form [(Ph2)2Cr][(CMe2CN)C60], whose protonation affords 1,2-(CMe2CN)(H)C60. 1,4-Di(2-cyanoisopropyl)-1,4-dihydrofullerene 1,4-(CMe2CN)2C60 and 1,2-(CMe2CN)(H)C60 are stable in vacuo up to 513 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1935–1939, September, 2008.  相似文献   

18.
Solutions of 80 mM benzophenone (BP) and up to 14 mM p-terphenyl (TP) in the ionic liquid methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide (R4NNTf2) have been investigated by nanosecond pulse radiolysis. The resulting transient absorption spectra of pulse-irradiated argon saturated solutions correspond to the formation of several intermediates derived from BP and TP: benzophenone radical anion [(C6H5)2CO]•− (BP•−) converted after ~20 μs into ketyl radicals (C6H5)2COH (BPH), a hydrogen adduct to the phenyl ring of benzophenone C6H5COC6H6, p-terphenyl triplet excited state 3TP*, and traces of TP radical ions. 3TP* was formed in two steps, the first immediately during the pulse and the second in pseudo-first order process with a second order reaction rate constant calculated from TP concentration dependence: k = ~2 × 108 dm3 mol−1 s−1.  相似文献   

19.
Three azido-bridged copper(II) complexes, [Cu2(L1)21,1,3-N3)2] n ·2nH2O (1), [Cu4(L2)41,1-N3)21,1,3-N3)2] n (2), and [Cu2(L3)21,1-N3)2] (3), where L1, L2, and L3 are the deprotonated forms of 4-bromo-2-[(2-methylaminoethylimino)methyl]phenol (HL1), 4-bromo-2-[(2-ethylaminoethylimino)methyl]phenol (HL2), and 4-bromo-2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and structurally characterized by single-crystal X-ray diffraction analysis and IR spectra. The slight differences in the terminal groups of the Schiff bases lead to different bridging modes of the azido groups.  相似文献   

20.
We report the reactivity of three binuclear non-heme Fe(III) compounds, namely [Fe2(bbppnol)(μ-AcO)(H2O)2](ClO4)2 (1), [Fe2(bbppnol)(μ-AcO)2](PF6) (2), and [Fe2(bbppnol)(μ-OH)(Cl)2]·6H2O (3), where H3bbppnol = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)–1,3-propanediamine-2-ol, toward the hydrolysis of bis-(2,4-dinitrophenyl)phosphate as models for phosphoesterase activity. The synthesis and characterization of the new complexes 1 and 3 was also described. The reactivity differences observed for these complexes show that the accessibility of the substrate to the reaction site is one of the key steps that determinate the hydrolysis efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号