首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The infrared photodissociation spectra (IRPD) in the 700 to 4000 cm(-1) region are reported for H+ (CO2)n clusters (n = 1-4) and their complexes with argon. Weakly bound Ar atoms are attached to each complex upon cluster formation in a pulsed electric discharge/supersonic expansion cluster source. An expanded IRPD spectrum of the H+ (CO2)Ar complex, previously reported in the 2600-3000 cm(-1) range [Dopfer, O.; Olkhov, R.V.; Roth, D.; Maier, J.P. Chem. Phys. Lett. 1998, 296, 585-591] reveals new vibrational resonances. For n = 2 to 4, the vibrational resonances involving the motion of the proton are observed in the 750 to 1500 cm(-1) region of the spectrum, and by comparison to the predictions of theory, the structure of the small clusters are revealed. The monomer species has a nonlinear structure, with the proton binding to the lone pair of an oxygen. In the dimer, this nonlinear configuration is preserved, with the two CO2 units in a trans configuration about the central proton. Upon formation of the trimer, the core CO2 dimer ion undergoes a rearrangement, producing a structure with near C2v symmetry, which is preserved upon successive CO2 solvation. While the higher frequency asymmetric CO2 stretch vibrations are unaffected by the presence of the weakly attached Ar atom, the dynamics of the shared proton motions are substantially altered, largely due to the reduction in symmetry of each complex. For n = 2 to 4, the perturbation due to Ar leads to blue shifts of proton stretching vibrations that involve motion of the proton mostly parallel to the O-H+-O axis of the core ion. Moreover, proton stretching motions perpendicular to this axis exhibit smaller shifts, largely to the red. Ab initio (MP2) calculations of the structures, complexation energies, and harmonic vibrational frequencies are also presented, which support the assignments of the experimental spectra.  相似文献   

2.
Gas phase C 6H 7 (+) and C 7H 9 (+) ions are studied with infrared photodissociation spectroscopy (IRPD) and the method of rare gas tagging. The ions are produced in a pulsed electric discharge supersonic expansion source from benzene or toluene precursors. We observe exclusively the formation of either the C 2 v benzenium ion (protonated benzene) or the para isomer of the toluenium ion (protonated toluene). The infrared spectral signatures associated with each ion are established between 750 and 3400 cm (-1). Comparing the gas phase spectrum of the benzenium ion to the spectrum obtained in a superacid matrix [ Perkampus, H. H.; Baumgarten, E. Angew. Chem. Int. Ed. 1964, 3, 776 ], we find that the C 2 v structure of the gas phase species is minimally affected by the matrix environment. An intense band near 1610 cm (-1) is observed for both ions and is indicative of the allylic pi-electron density associated with the six membered ring in these systems. This spectral signature, also observed for alkyl substituted benzenium ions and protonated naphthalene, compares favorably with the interstellar, unidentified infrared emission band near 6.2 microm (1613 cm (-1)).  相似文献   

3.
C3H5+ cations are probed with infrared photodissociation spectroscopy in the 800-3500 cm(-1) region using the method of rare gas tagging. The ions and their complexes with Ar or N2 are produced in a pulsed electric discharge supersonic expansion cluster source. Two structural isomers are characterized, namely, the allyl (CH2CHCH2+) and 2-propenyl (CH3CCH2+) cations. The infrared spectrum of the allyl cation confirms previous theoretical and condensed phase studies of the C(2nu) charge delocalized, resonance-stabilized structure. The 2-propenyl cation spectrum is consistent with a C(s) symmetry structure having a nearly linear CCC backbone and a hyperconjugatively stabilizing methyl group.  相似文献   

4.
The spectral properties of protonated water clusters, especially the difference between Eigen (H3O+) and Zundel (H5O2+) conformers and the difference between their unhydrated and dominant hydrated forms are investigated with the first principles molecular dynamics simulations as well as with the high level ab initio calculations. The vibrational modes of the excess proton in H3O+ are sensitive to the hydration, while those in H5O2+ are sensitive to the messenger atom such as Ar (which was assumed to be weakly bound to the water cluster during acquisitions of experimental spectra). The spectral feature around approximately 2700 cm-1 (experimental value: 2665 cm-1) for the Eigen moiety appears when H3O+ is hydrated. This feature corresponds to the hydrating water interacting with H3O+, so it cannot appear in the Eigen core. Thus, H3O+ alone would be somewhat different from the Eigen forms in water. For the Zundel form (in particular, H5O2+), there have been some differences in spectral features among different experiments as well as between experiments and theory. When an Ar messenger atom is introduced at a specific temperature corresponding to the experimental condition, the calculated vibrational spectra for H5O2+.Ar are in good agreement with the experimental infrared spectra showing the characteristic Zundel frequency at approximately 1770 cm-1. Thus, the effect of hydration, messenger atom Ar, and temperature are crucial to elucidating the nature of vibrational spectra of Eigen and Zundel forms and to assigning the vibrational modes of small protonated water clusters.  相似文献   

5.
By using stoichiometric amounts of (C5H5)2FePF6, the isomeric neutral diamidate-bridged molecules, alpha- and beta-(DAniF)3Mo2(ArN(O)CC(O)NAr)Mo2(DAniF)3, with Ar = p-MeOC6H4, have been oxidized to give the PF6 salts of the four cations alpha1+, alpha2+, beta1+, and beta2+. All four structures have been accurately determined and, together with supporting evidence from near-IR, EPR, NMR and magnetic susceptibility measurements, it clearly establishes that in the mixed-valent alpha+ species the unpaired electron is localized over only one of the Mo2 units while the alpha2+ cation behaves as a diradical having two Mo25+ units that are essentially uncoupled. However, the beta+ species is fully delocalized, in the time scale of the experiments, with the unpaired electron being equally shared by the two Mo2 units. It displays a HOMO-1 --> SOMO transition at 4700 cm-1 (Deltanu1/2 = 2300 cm-1). Because of strong coupling, the beta2+ species is diamagnetic.  相似文献   

6.
Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C(4)H(4)(●+) ion in the cluster beam. The measured average collision cross section of the C(4)H(4)(●+) isomers in helium (38.9 ± 1 A?(2)) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C(4)H(4)(●+) ion [methylenecyclopropene (39.9 A?(2)), 1,2,3-butatriene (41.1 A?(2)), cyclobutadiene (38.6 A?(2)), and vinyl acetylene (41.1 A?(2))]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C(4)H(4)(●+) ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C(4)H(4)(●+) ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C(2)H(2))(2)(●+) [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)]. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C(4)H(4)(●+)(H(2)O)(n) clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C(4)H(4)(●+)H(2)O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene(●+)·H(2)O cluster (41 kJ/mol). The binding energies of the C(4)H(4)(●+)(H(2)O)(n) clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C(4)H(4)(●+) and water-water interactions. A significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure with restrained water molecules, probably a cyclic water pentamer within the C(4)H(4)(●+)(H(2)O)(5) cluster. Consequently, a drop in the binding energy of the sixth water molecule is observed suggesting a structure in which the sixth water molecule interacts weakly with the C(4)H(4)(●+)(H(2)O)(5) cluster presumably consisting of a cyclobutadiene(●+) cation hydrogen bonded to a cyclic water pentamer. The combination of ion mobility, dissociation, and hydration experiments in conjunction with the theoretical calculations provides strong evidence that the (C(2)H(2))(2)(●+) ions are predominantly present as the cyclobutadiene cation with some contribution from the vinyl acetylene cation.  相似文献   

7.
自宏观量合成和分离C60以来,人们不断地合成各种功能化的C60衍生物.在对C60化学性质的认识过程中,气相离子化学一直起着十分重要的作用。  相似文献   

8.
We report that 10-100 eV Ar+ ion irradiation induces severe damage to the biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose in the condensed phase on a polycrystalline Pt substrate. Ar+ ions with kinetic energies down to 15 eV induce effective decomposition of both sugar molecules, leading to the desorption of abundant cation and anion fragments, including CH3+, C2H3+, C3H3+, H3O+, CHO+, CH3O+, C2H3O+, H-, O-, and OH-, etc. Use of isotopically labelled molecules (5- 13C D-ribose and 1-D D-ribose) reveals the site specificity for some of the fragment origins, and thus the nature of the chemical bond breaking. It is found that all of the chemical bonds in both molecules are vulnerable to ion impact at energies down to 15 eV, particularly both the endo- and exocyclic C-O bonds. In addition to molecular fragmentation, several chemical reactions are also observed. A small amount of O-/O fragments abstract hydrogen to form OH-. It is found that the formation of the H3O+ ion is related to the hydroxyl groups of the sugar molecules, and is associated with additional hydrogen loss from the parent or adjacent molecules via hydrogen abstraction or proton transfer. The formation of several other cation fragments also requires hydrogen abstraction from its parent or an adjacent molecule. These fragmentations and reactions are likely to occur in a real biomedium during ionizing radiation treatment of tumors and thus bear significant radiobiological relevance.  相似文献   

9.
Gas-phase ion-molecule reactions in octafluorocyclopentene (C5F8) were studied with a pulsed electron beam mass spectrometer. When a few Torr of major gas, CH4, Ar, or N2, containing approximately 10 mTorr C5F8 was ionized by 2 keV electrons, C5F8+, C5F7+, C4F6+, C4F5+, and C3F3+ were formed as major fragment ions. The interaction between those ions and C5F8 is found to be a weak electrostatic interaction. The cation...C5F8 bonding energies are around 10 kcal/mol, which were reproduced well by (U)B3LYP/6-311+G(d) calculations. The proton affinity of C5F8 (=148.6 kcal/mol by B3LYP/6-311+G(d)) was found to be smaller than that of C2H4 (=162.8 kcal/mol). In the negative mode of operation, the intense signal of C5F8- was observed during the electron pulse. This indicates that C5F8 has a positive electron affinity (1.27 eV by (U)B3LYP/6-311+G(d)). The C5F8- ion was quickly converted to a complex C10F16-. This complex did not react further with C5F8 down to 170 K. The theoretical calculation revealed that a C5F7-F-...C5F8 interaction mode in (C5F8)2- was converted to a C5F7*...C5F9- one via fluoride-ion transfer. The F- ion was found to form a strong covalent bond with C5F8, but the interaction in F-(C5F8)- - -C5F8 is a weak electrostatic interaction due to the charge dispersal in F-(C5F8). The halide ions except F- interact with C5F8 only weakly. Thermochemical stabilities for the cluster ions I-(CH3I)n (n = 1, 2) were also determined.  相似文献   

10.
The energetics, dynamics, and infrared spectroscopy of the shared proton in different chemical environments is investigated using molecular dynamics simulations. A three-dimensional potential energy surface (PES) suitable for describing proton transfer between an acceptor and a donor oxygen atom is combined with an all-atom force field to carry out reactive molecular dynamics simulations. The construction of the fully dimensional PES is inspired from the established mixed quantum mechanics/molecular mechanics treatment of larger systems. The "morphing potential" method is used to transform the generic PES for proton transfer along an O...H+...O motif into a three-dimensional PES for proton transfer in protonated diglyme. Using molecular dynamics simulations at finite temperature, the gas phase infrared spectra are calculated for both species from the Fourier transform of the dipole moment autocorrelation function. For protonated diglyme the modes involving the H+ motion are strongly mixed with other degrees of freedom. At low temperature, the O...H+...O asymmetric stretching vibration is found at 870 cm-1, whereas for H5O2+ this band is at 724 cm-1. As expected, the vibrational bands of protonated diglyme show no temperature dependence whereas for H5O2+ at T = 100 K the proton transfer mode is found at 830 cm-1, in good agreement with 861 cm-1 from very recent molecular dynamics simulations.  相似文献   

11.
Dimers of free nucleobases with their conjugate acid ions can be assigned to either of two categories: protonated dimers or proton-bound dimers. In the former, the extra proton attaches to a lone pair of a neutral dimer. In the latter, the extra proton is situated between two lone pairs and participates in a proton bridge. In general, proton-bound dimers are found to be more tightly held together than protonated dimers. While neutral adenine and its isomer 8-aminopurine (C(5)H(5)N(5)) are substantially more stable than their 7H tautomers, their conjugate acid ions and those of their respective 7H tautomers have nearly the same heats of formation. Correspondingly, the most stable (C(5)H(5)N(5))2H+ structures contain 7H tautomers as the neutral partner. Proton transit from one partner to the other within the most stable protonated dimer of 8-aminopurine has a low barrier (6 kJ mol(-1)). The potential energy curve for the NH stretch in that case is better fitted as a double minimum rather than as a harmonic potential. Purine-purine mismatches have been observed in nucleic acids, to which calculated (C(5)H(5)N(5))2H+ dimer geometries appear nearly isosteric.  相似文献   

12.
Infrared photodissociation (IRPD) spectra of mass-selected clusters composed of protonated aniline (C6H8N+ = AnH+) and a variable number of neutral ligands (L = Ar, N2) are obtained in the N-H stretch range. The AnH+ -Ln complexes (n < or = 3) are produced by chemical ionization in a supersonic expansion of An, H2, and L. The IRPD spectra of AnH+-Ln feature the unambiguous fingerprints of at least two different AnH+ nucleation centers, namely, the ammonium isomer (5) and the carbenium ions (1 and/or 3) corresponding to protonation at the N atom and at the C atoms in the para and/or ortho positions, respectively. Protonation at the meta and ipso positions is not observed. Both classes of observed AnH+-Ln isomers exhibit very different photofragmentation behavior upon vibrational excitation arising from the different interaction strengths of the AnH+ cores with the surrounding neutral ligands. Analysis of the incremental N-H stretch frequency shifts as a function of cluster size shows that microsolvation of both 5 and 1/3 in Ar and N2 starts with the formation of intermolecular H bonds of the ligands to the acidic NH protons and proceeds by intermolecular pi bonding to the aromatic ring. The analysis of both the photofragmentation branching ratios and the N-H stretch frequencies demonstrates that the N-H bonds in 5 are weaker and more acidic than those in 1/3, leading to stronger intermolecular H bonds with L. The interpretation of the spectroscopic data is supported by density functional calculations conducted at the B3LYP level using the 6-31G* and 6-311G(2df,2pd) basis sets. Comparison with clusters of neutral aniline and the aniline radical cation demonstrates the drastic effect of protonation and ionization on the acidity of the N-H bonds and the topology of the intermolecular potential, in particular on the preferred aromatic substrate-nonpolar ligand recognition motif.  相似文献   

13.
本文用a b initio计算法和近似a b initio计算法(PRDDO)研究了质子化硼烷正离子体系的电子结构,给出了一些正离子体系的优化几何构型并讨论了它们的成键情况。计算的硼烷分子质子亲和势与实验值相当吻合。  相似文献   

14.
Botschwina P  Dutoi T  Mladenović M  Oswald R  Schmatz S  Stoll H 《Faraday discussions》2001,(118):433-53; discussion 487-503
Several proton-bound cluster ions have been studied by means of coupled cluster calculations with large basis sets. Among these are complexes of a krypton or xenon atom with the cations HCO+, HN2+ and HNCH+. Various spectroscopic properties have been calculated in all cases. Effects of vibrational anharmonicity are particularly pronounced for the intramolecular stretching vibrations of Kr...HN2+ and Xe...HN2+. The proton stretching vibration of (N2)H+(N2) is predicted around 800 cm-1, with a large transition dipole moment of 1.15 D. Both (N2)H+(N2) and (HCN)H+(NCH) have linear centrosymmetric equilibrium structures. Those of (OC)H+(CO) and (HCC-)H+(CCH-) are asymmetric with barrier heights to the centrosymmetric saddle points of 382 and 2323 cm-1, respectively. The dissociation energy of the anionic complex Cl-...HCCH is calculated to be Do = 3665 cm-1, 650 cm-1 larger than the corresponding value for Br-...HCCH. The complex between a fluoride ion and acetylene is more strongly bound and shows strongly anharmonic behaviour, similar to the bihalides FHF- or ClHCl-. Strong Fermi resonance interaction is predicted between nu 3 (approximately proton stretch) and 2 nu 4 (first overtone of intermolecular stretch).  相似文献   

15.
The chemistry of phenylium (benzen-1-ylium) cations with benzene is investigated by using a guided ion beam tandem mass spectrometer. The main ionic products from the reaction of C6H5+ with C6H6 are observed at m/z 155 (covalent adduct C12H11+), 154 (C12H10+), 153 (C12H9+), 129 (C10H9+), and 115 (C9H7+). We propose a mechanism according to which channels at m/z 154-115 are formed by elimination of stable neutral molecules (such as H2, C2H2, C3H4) from the collision complex C12H11+, for which the most plausible structure is protonated biphenyl. The proposed mechanism is demonstrated by using partial isotopical labeling of reagents to look for possible H/D atom scrambling. Almost the same ions are produced when benzene is chemically ionized at atmospheric pressure in an APCI source from which oxygen is excluded. Because an ion trap analyzer is coupled to this source, tandem MS experiments can be performed, allowing structural details to be established. Moreover, the use of partially deuterated reagents has allowed the detection of minor reactive channels resulting from charge exchange and H-/D- hydride-transfer processes. Theoretical calculations show that the most stable structure for ions at m/z 129 C10H9+ is that of protonated naphthalene, resulting from the loss of an acetylene molecule by the condensation product, with a reaction exothermicity of 1.27 eV. We have found a possible barrierless pathway for such a channel that might be viable for the synthesis of naphthalene, the smallest PAH, even at low collision energies and therefore would be of particular astrochemical relevance.  相似文献   

16.
Cationic water clusters containing iodine, of the composition I(H2O)n+, n = 0-25, are generated in a laser vaporization source and investigated by FT-ICR mass spectrometry. An investigation of blackbody radiation-induced fragmentation of size-selected clusters I(H2O)n+, n = 3-15, under collision-free conditions revealed an overall linear increase of the unimolecular rate constant with cluster size, similar to what has been observed previously for other hydrated ions. Above a certain critical size, I(H2O)n+, n greater than or approx. 13, reacts with HCl by formation of the interhalide ICl and a protonated water cluster, which is the reverse of a known solution-phase reaction. Accompanying density functional calculations illustrate the conceptual differences between cationic and anionic iodine-water clusters I(H2O)n+/-. While I-(H2O)n is genuinely a hydrated iodide ion, the cationic closed-shell species I(H2O)n+ may be best viewed as a protonated water cluster, in which one water molecule is replaced by hypoiodous acid. In the strongly acidic environment, HOI is protonated because of its high proton affinity. However, similar to the well-known H3O+/H5O2+ controversy in protonated water clusters, a smooth transition between H2IO+ and H4IO2+ as core ions is observed for different cluster sizes.  相似文献   

17.
Isolated and microsolvated protonated ethanol clusters, (EtOH)qH+-Ln with L = Ar and N2, are characterized by infrared photodissociation (IRPD) spectroscopy in the 3 microm range and quantum chemical calculations. For comparison, also the spectrum of the protonated methanol dimer, (MeOH)2H+, is presented. The IRPD spectra carry the signature of H-bonded (EtOH)qH+ chain structures, in which the excess proton is either strongly localized on one or (nearly) equally shared between two EtOH molecules, corresponding to Eigen-type ion cores (EtOH2+ for q = 1, 3) or Zundel-type ion cores (EtOH-H+-HOEt for q = 2, 4), respectively. In contrast to neutral (EtOH)q clusters, no cyclic (EtOH)qH+ isomers are detected in the size range investigated (q < or = 4), indicative of the substantial impact of the excess proton on the properties of the H-bonded ethanol network. The acidity of the two terminal OH groups in the (EtOH)qH+ chains decreases with the length of the chain (q). Comparison between (ROH)qH+ with R = CH3 and C2H5 shows that the acidity of the terminal O-H groups increases with the length of the aliphatic rest (R). The most stable (EtOH)qH+-Ln clusters with n < or = 2 feature intermolecular H-bonds between the inert ligands and the two available terminal OH groups of the (EtOH)qH+ chain. Asymmetric microsolvation of (EtOH)qH+ with q = 2 and 4 promotes a switch from Zundel-type to Eigen-type cores, demonstrating that the fundamental structural motif of the (EtOH)qH+ proton wire sensitively depends on the environment. The strength of the H-bonds between L and (EtOH)qH+ is shown to provide a rather sensitive probe of the acidity of the terminal OH groups.  相似文献   

18.
The solvation energies of the pyridine*+ radical cation by 1-4 H2O molecules were determined by equilibrium measurements in a drift cell. The binding energies of the pyridine*+(H2O)n clusters are similar to the binding energies of protonated pyridine-water clusters, (C5H5NH+)(H2O)n, which involve NH+..OH2 bonds and different from those of the solvated benzene radical cation-water clusters, C6H6*+(H2O)n, which involve CHdelta+..OH2 bonds. These relations indicate that the observed pyridine*+ ions have the distonic *C5H4NH+ structures that can form NH+..OH2 bonds. The observed thermochemistry and ab initio calculations show that these bonds are not affected significantly by an unpaired electron at another site of the ion. Similar observations also identify the 2-fluoropyridine*+ distonic ion. The distonic structure is also consistent with the reactivity of pyridine*+ in H atom transfer, intra-cluster proton transfer and deprotonation reactions. The results present the first measured stepwise solvation energies of distonic ions, and demonstrate that cluster thermochemistry can identify distonic structures.  相似文献   

19.
Baer T  Song Y  Liu J  Chen W  Ng CY 《Faraday discussions》2000,(115):137-45; discussion 175-204
Pulsed field ionization photoelectron (PFI-PE) spectroscopy combined with ion coincidence detection has been used with multi-bunch synchrotron radiation at the Advance Light Source (ALS) to energy select ions and to measure their breakdown diagram. The resolution for ion state selection achieved with Ar+ (2P3/2, 1/2) employing this PFI-PE-photoion coincidence apparatus is 0.6 meV (full width at half maximum). The production of C2H5+ from C2H5Br was investigated near the dissociative photoionization limit with this pulsed field ionization-threshold photoelectron photoion coincidence (PFI-PEPICO) scheme. Although the PFI-PE spectra of C2H5Br, C2H5I, and benzene show that the production of ions in the Franck-Condon gap regions is quite low, the selectivity for PFI-PE detection and the suppression of prompt electrons is such that we can detect 1 PFI-PE out of 25,000 total electrons s-1. The derived C2H5+ heat of formation from the analysis of the C2H5Br+ breakdown diagram and a critical analysis of other results is 900.5 +/- 2.0 kJ mol-1 at 298 K, or 913.2 +/- 2.0 kJ mol-1 at 0 K. This leads to an ethylene proton affinity at 298 K of 682.0 kJ mol-1. The measured IE of C2H5Br is 10.307 eV.  相似文献   

20.
Recent spectroscopic advances have led to the first determinations of infrared vibration-rotation bands of polyatomic molecular ions. These initial detections were guided by ab initio predictions of the vibrational frequencies. The calculations reported here predict the vibrational frequencies of additional ions which are candidates for laboratory analysis. Vibrational frequencies of neutral molecules computed at three levels of theory, HF/3-21G, HF/6-31G*, and MP2/6-31G*, were compared with experiment and the effect of scaling was investigated to determine how accurately vibrational frequencies could be predicted. For 92% of the frequencies examined, uniformly scaled HF/6-31G* vibrational frequencies were within 100 cm-1 of experiment with a mean absolute error of 49 cm-1. This relatively simple theory thus seems suitable for predicting vibrational frequencies to guide laboratory spectroscopic searches for ions in the infrared. Hence, the frequencies of 30 molecular ions, many with astrochemical significance,were computed. They are CH2+, CH3+, CH5+, NH2+, NH4+, H3O+, H2F+, SiH2+, PH4+, H3S+, H2Cl+, C2H+, classical C2H3+, nonclassical C2H3+, nonclassical C2H5+, HCNH+, H2CNH2+, H3CNH3+, HCO+, HOC+, H2CO+, H2COH+, H3COH2+, H3CFH+, HN2+, HO2+, C3H+, HOCO+, HCS+, and HSiO+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号