首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The general bending problem of conical shells on the elastic foundation (Winkler Medium) is not solved. In this paper, the displacement solution method for this problem is presented. From the governing differential equations in displacement form of conical shell and by introducing a displacement function U(s,θ), the differential equations are changed into an eight-order soluble partial differential equation about the displacement function U(s,θ) in which the coefficients are variable. At the same time, the expressions of the displacement and internal force components of the shell are also given by the displacement function U(s θ). As special cases of this paper, the displacement function introduced by V.S. Vlasov in circular cylindrical shell[5], the basic equation of the cylindrical shell on the elastic foundation and that of the circular plates on the elastic foundation are directly derived.Under the arbitrary loads and boundary conditions, the general bending problem of the conical shell on the elastic foundation is reduced to find the displacement function U(s,θ).The general solution of the eight-order differential equation is obtained in series form. For the symmetric bending deformation of the conical shell on the elastic foundation, which has been widely usedinpractice,the detailed numerical results and boundary influence coefficients for edge loads have been obtained. These results have important meaning in analysis of conical shell combination construction on the elastic foundation,and provide a valuable judgement for the numerical solution accuracy of some of the same type of the existing problem.  相似文献   

2.
彭凡  顾勇军  马庆镇 《力学学报》2012,44(2):308-316
基于经典的对应原理, 将 Mori-Tanaka 方法等细观力学结果推广于定常温度环境下的黏弹性情形. 根据泊松比与时间呈弱相关的特点, 给出 Laplace 象空间中功能梯度材料的松弛模量和热膨胀系数, 并直接建立耦合热应变的多维黏弹性本构关系. 在此基础上, 求解黏弹性功能梯度圆柱薄壳在热环境中的轴对称弯曲蠕变变形问题. 考虑材料热物参数的温度相关性, 首先确定稳态温度场, 导出相空间中轴对称弯曲变形的解析解, 采用数值反演得到蠕变变形. 算例表明, 蠕变初期, 热环境的影响明显, 随着时间增加, 热应力松弛, 影响逐渐消失. 当圆柱薄壳受轴压时, 相比于两端固支, 两端简支的端部变形更加明显. 通过圆柱薄壳的轴对称弯曲求解, 给出体积含量呈任意分布的黏弹性功能梯度结构在热机载荷下的蠕变分析途径.   相似文献   

3.
The equations of nonaxisymmetric vibrations of sandwich cylindrical shells with discrete core under nonstationary loading are presented. The components of the elastic structure are analyzed using a refined Timoshenko theory of shells and rods. The numerical method used to solve the dynamic equations is based on the integro-interpolation method of constructing finite-difference schemes for equations with discontinuous coefficients. The dynamic problem for a sandwich cylindrical shell under distributed nonstationary loading is solved with regard for the discreteness of the core__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 2, pp. 60–67, February 2005.  相似文献   

4.
The physical occurrence that crack surfaces are in contact at the compressive edges when a flat or a shell is subjected to a bending load has been recognized. This article presents a theoretical analysis of crack–face contact effect on the stress intensity factor of various shell structures such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with two non-zero curvatures, under a bending load. The formulation of the problem is based on the shear deformation theory, incorporating crack–face contact by introducing distributed force at the compressive edge. Material orthotropy is concerned in this analysis. Three-dimensional finite element analysis (FEA) is conduced to compare with the theoretical solution. It is found that due to curvature effect crack–face contact behavior in shells differs from that in flat plates, in that partial contact of crack surfaces may occur in shells, depending on the shell curvature and the nature of the bending load. Crack–face contact has significant influence on the stress intensity factor and it increases the membrane component but decreases the bending component.  相似文献   

5.
One of the possible ways of stating and solving the selection problem for optimum temperature fields for localized axisymmetric heating of shells is investigated. The minimum of shell elastic energy is taken as the optimization criterion. An infinite cylindrical shell was considered in a similar formulation in [1], The corresponding variational problem is formulated for the functional of elastic energy with additional limitations imposed on the function of twist angle at specified shell sections. The variational problem is reduced to an isoperimetric by the use of singular functionals of the -function kind. The related Euler equation is obtained, and this together with the problem resolvent equation constitute a complete set of equations for determining the extremum temperature field with related stress-strain state of the shell. Cylindrical, conical, and spherical shells are considered separately. A numerical analysis is made for the simplest conditions of localized heating of cylindrical and conical shells.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 4, pp. 47–54, July–August, 1968.  相似文献   

6.
The methods of finite-element analysis are applied to the problem of large deflection elastic-plastic dynamic responses of cylindrical shells to transient loading. Assumeddisplacement quadrilateral finite-elements of a cylindrical panel are used to idealize the cylindrical shell structure. The formulation is based upon the Principle of Virtual Work and D'Alembert's Principle. A direct numerical integration procedure is employed to solve the resulting equations of motion timewise. The present predicted dynamic responses of an explosively-loaded clamped cylindrical panel are compared with other independent predictions and with experimentally measured responses; very good agreement is observed.  相似文献   

7.
In this paper,the displacement solution method of the conical shell is presented.Fromthe differential equations in displacement form of conical shell and by introducing adisplacement function,U(s,θ),the differential equations are changed into an eight-ordersoluble partial differential equation about the displacement function U(s,θ)in which thecoefficients are variable.At the same time,the expressions of the displacement and internalforce components of the shell are also given by the displacement function.As special casesof this paper,the displacement function introduced by V.Z.Vlasov in circular cylindricalshell,the basic equation of the cylindrical shell and that of the circular plate are directlyderived.Under the arbitrary loads and boundary conditions,the general bending problem of theconical shell is reduced to finding the displacement function U(s,θ),and the generalsolution of the governing equation is obtained in generalized hypergeometric function,Forthe axisymmetric bending deformation of the  相似文献   

8.
The impedance at the randomly rough upper boundary of an ocean waveguide is derived. The sound speed of the waveguide is an arbitary function of depth. The boundary surface height is assumed to be a statistically homogeneous Gaussian process. Integral equations for the Green's function and its normal derivative on the boundary are derived. These are solved to second order in the surface interaction. The result is a rational approximation to the impedance in terms of the wave guide Green's function and the statistical properties of the surface. The special cases of small and large roughness as well as that of a constant sound speed profile are presented. For simplicity we restrict the analysis to a semi-infinite waveguide where the waveguide Green's function vanishes at the surface (Dirichlet problem).  相似文献   

9.
We consider the problem of thermal stresses in cylindrical elastic shells, modelled as Cosserat surfaces. In the theory of Cosserat shells, the thermal effects are described generally by means of two temperature fields. The problem consists in finding the equilibrium of the shell under the action of a given temperature distribution. The temperature fields are assumed to be general polynomial functions in the axial coordinate, whose coefficients depend on the circumferential coordinate.  相似文献   

10.
In this paper we present a theory for porous elastic shells using the model of Cosserat surfaces. We employ the Nunziato–Cowin theory of elastic materials with voids and introduce two scalar fields to describe the porosity of the shell: one field characterizes the volume fraction variations along the middle surface, while the other accounts for the changes in volume fraction along the shell thickness. Starting from the basic principles, we first deduce the equations of the nonlinear theory of Cosserat shells with voids. Then, in the context of the linear theory, we prove the uniqueness of solution for the boundary initial value problem. In the case of an isotropic and homogeneous material, we determine the constitutive coefficients for Cosserat shells, by comparison with the results derived from the three-dimensional theory of elastic media with voids. To this aim, we solve two elastostatic problems concerning rectangular plates with voids: the pure bending problem and the extensional deformation under hydrostatic pressure.  相似文献   

11.
AMABILI  MARCO  DALPIAZ  GIORGIO 《Meccanica》1997,32(1):71-84
The free vibrations of circular cylindrical shells partiallyloaded by a distributed mass and rested on an elastic bed are studied in this paper. Both the mass-load and the elastic bed are assumed to be applied on limited arcs and with arbitrary distributions in circumferential direction,while they are considered to be uniformly distributed in longitudinaldirection on the entire shell length. Therefore, the problem is notaxisymmetric. The solution is obtained by using the development of theflexural mode shapes in a Fourier series, whose coefficients are determinedby rendering the Rayleigh quotient stationary, so a Galerkin equation isobtained. The proposed method is independent of the boundary conditionsat the shell ends. The results are satisfactorily compared to FEM results.Finally, the influence of the mass-load and of the bed stiffness on thenatural frequencies and mode shapes of a simply supported shell is shownand discussed.  相似文献   

12.
STRESS CONCENTRATIONS IN CYLINDRICAL SHELLS WITH LARGE OPENINGS   总被引:6,自引:0,他引:6  
Based on Donnell's shallow shell equation, a new method is given in this paper to ana-lyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With themethod of complex variable function, a series of conformal mapping functions are obtained from dif-ferent cutouts' boundary curves in the developed plane of a cylindrical shell to the unit circle. And,the general expressions for the equations of a cylindrical shell, including the solutions of stress concen-trations meeting the boundary conditions of the large openings' edges, are given in the mapping plane.Furthermore, by applying the orthogonal function expansion technique, the problem can be summa-rized into the solution of infinite algebraic equation series. Finally, numerical results are obtained forstress concentration factors at the cutout's edge with various opening's ratios and different loadingconditions. This new method, at the same time, gives a possibility to the research of cylindrical shellswith large non-circular openings or with nozzles.  相似文献   

13.
The paper studies the interaction of a harmonically oscillating spherical body and a thin elastic cylindrical shell filled with a perfect compressible fluid and immersed in an infinite elastic medium. The geometrical center of the sphere is located on the cylinder axis. The acoustic approximation, the theory of thin elastic shells based on the Kirchhoff—Love hypotheses, and the Lamé equations are used to model the motion of the fluid, shell, and medium, respectively. The solution method is based on the possibility of representing partial solutions of the Helmholtz equations written in cylindrical coordinates in terms of partial solutions written in spherical coordinates, and vice versa. Satisfying the boundary conditions at the shell—medium and shell—fluid interfaces and at the spherical surface produces an infinite system of algebraic equations with coefficients in the form of improper integrals of cylindrical functions. This system is solved by the reduction method. The behavior of the hydroelastic system is analyzed against the frequency of forced oscillations.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 75–86, September 2004.  相似文献   

14.
The equations of nonaxisymmetric vibrations of discretely reinforced multilayer cylindrical shells are analyzed. A refined Timoshenko model of shells and beams is used to analyze elements of an elastic structure. The vibration equations for an inhomogeneous elastic system are derived using the Reissner variational principle. The numerical solver of the dynamic equations is based on the integro-interpolation method used to construct finite-difference schemes for equations with discontinuous coefficients. The dynamic behavior of a five-layer cylindrical shell under distributed nonstationary loading is analyzed  相似文献   

15.
This paper presents a general nonlinear theory of elastic shells for large deflections and finite strains in reference to a certain natural state. By expanding the displacement components into power series in the coordinate θ3 normal to the undeformed middle surface of shells, the expansions of the Cauchy-Green strain tensors are expressed in terms of these expanded displacement components. Through the modified Hellinger-Reissner variational principle for a three-dimensional elastic continuum, a set of the fundamental shell equations is derived in terms of the expanded Cauchy-Green strain tensors and Kirchhoff stress resultants. The Love-Kirchhoff hypothesis is not assumed and higher order stretching and bending are taken into consideration. For elastic shells of isotropic materials, assuming the strain-energy to be an analytic function of the strain measures, general nonlinear constitutive equations are then derived. Thus, a complete and consistent two-dimensional shell theory incorporating the geometrical and physical nonlinearities is established. The classical theories of shells are directly derivable from the present results by proper truncations of the series.  相似文献   

16.
A technique for stability analysis of cylindrical shells with a corrugated midsurface is proposed. The wave crests are directed along the generatrix. The relations of shell theory include terms of higher order of smallness than those in the Mushtari–Donnell–Vlasov theory. The problem is solved using a variational equation. The Lamé parameter and curvature radius are variable and approximated by a discrete Fourier transform. The critical load and buckling mode are determined in solving an infinite system of equations for the coefficients of expansion of the resolving functions into trigonometric series. The solution accuracy increases owing to the presence of an aggregate of independent subsystems. Singularities in the buckling modes of corrugated shells corresponding to the minimum critical loads are determined. The basic, practically important conclusion is that both isotropic and orthotropic shells with sinusoidal corrugation are efficient only when their length, which depends on the waveformation parameters and the geometric and mechanical characteristics, is small  相似文献   

17.
We develop in this paper a comprehensive micromechanical model for the analysis of thin smart composite grid-reinforced shells with an embedded periodic grid of generally orthotropic cylindrical reinforcements that may also exhibit piezoelectric properties. The original boundary value problem which characterizes the thermopiezoelastic behavior of the smart shell is decoupled via the asymptotic homogenization technique into three simpler problems the solution of which permits the determination of the effective elastic, piezoelectric and thermal expansion coefficients. The general orthotropy of the constituent materials is very important from the practical viewpoint and it renders the resulting analysis a lot more complicated. In Part II of this work the model is applied to the analysis of several practically important examples including cylindrical reinforced smart composite shells and multi-layer smart shells.  相似文献   

18.
This paper reviews studies and analyzes results on the effect of discrete ribs on the dynamic characteristics of rectangular plates and cylindrical shells. Use is made of the vibration equations derived from the classical theories of beams, plates, and shells. The effect of Pasternak’s elastic foundation on the critical velocities of a structurally orthotropic model of a ribbed cylindrical shell is determined. Nonstationary problems are solved for perforated and ribbed shells of revolution filled with a fluid or resting on an elastic foundation and subjected to moving or impulsive loads. Results from studies of the behavior of sandwich shell structures under impulsive loads of various types are presented  相似文献   

19.
A comprehensive micromechanical model for the analysis of thin smart composite grid-reinforced shells with an embedded periodic grid of generally orthotropic cylindrical reinforcements that may also exhibit piezoelectric properties is developed and applied to examples of practical importance. Details on derivation of a general homogenized smart shell model are provided in Part I of this work. The present paper solves the obtained unit cell problems and develops expressions for the effective elastic, piezoelectric and thermal expansion coefficients for the grid reinforced smart composite shell. Thus obtained effective coefficients are universal in nature and can be used to study a wide variety of boundary value problems. The applicability of the model is illustrated by means of several examples including cylindrical reinforced smart composite shells, and multi-layer smart shells. The derived expressions allow tailoring the effective properties of a smart grid-reinforced shell to meet the requirements of a particular application by changing certain geometric or physical parameters.  相似文献   

20.
A new numerical approach is suggested for studying elastic surface-wave propagation across vertical discontinuities. Some computational results for Love wave propagation across the vertical boundary between two layered-quarterspaces are demonstrated. Disturbances of the surface-wave field near the discontinuity due to diffraction phenomena are found. The validity of the so-called Green's function technique for an approximate solution of the problem is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号