首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In their paper A note on Misunderstandings of Piron's Axioms for Quantum Mechanics, Foulis and Randall undertake a reply to our critique of Piron's question-proposition system (qp-s) which appeared in previous issues of this journal. In the present paper, we want briefly to refute the points of criticism raised by Foulis and Randall (FR). We argue that the misunderstandings are not ours, and we prove it.  相似文献   

2.
Quite often the compatibility of the EPR correlations with the relativity theory has been questioned; it has been stated that the first in time of two correlated measurements instantaneously collapses the other subsystem; it has been suggested that a causal asymmetry is built into the Feynman propagator. However, the EPR transition amplitude, as derived from the S matrix, is Lorentz andCPT invariant; the correlation formula is symmetric in the two measurements irrespective of their time ordering, so that the link of the correlations is the Feynman zigzag, and that causality isCPT invariant at the microlevel; finally, although the Feynman propagator has theP andCT symmetries, no causal asymmetry follows from that. As for Stapp's views concerning process and becoming, and his Whiteheadean concept of an advancing front, I object that they belong to factlike macrophysics, and are refuted at the microlevel by the EPR phenomenology, which displays direct Fokker-like space-time connections. The reason for this is a radical one. The very blending of a space-time picture and of a probability calculus is a paradox. The only adequate paradigm is one denying objectivity to space-time—but this, of course, is also required by the complementary of the x and the k pictures, which only look compatible at the macrolevel. Therefore, the classical objectivity must yield in favor of intersubjectivity. Only the macroscopic preparing and measuring devices have factlike objectivity; the transition of the quantal system takes place beyond both thex and thek 4-spaces. Then, the intrinsic symmetries between retarded and advanced waves, and statistical prediction and retrodiction, entails that the future has no less (but no more) existence than the past. It is the future that is significant in creative process, the elementary forms of which should be termed precognition or psychokinesis—respectively symmetric to the factlike taboos that we can neither know into the future nor act into the past. It is gratifying that Robert Jahn, at the Engineering School of Princeton University, is conducting (after others) conclusive experiments demonstrating low level psychokinesis—a phenomenon implied by the very symmetry of the negentropy-information transition. So, what pierces the veil of maya is the (rare) occurrence of paranormal phenomena. The essential severance between act and potentia is not a spacelike advancing front, but the out of and the into factlike space-time. Finally, I do not feel that an adequate understanding of the EPR phenomenology requires going beyond the present status of relativistic quantum mechanics. Rather, I believe that the potentialities of this formalism have not yet been fully exploited.  相似文献   

3.
I sketch a self-contained framework for quantum mechanics based on its path-integral or sum-over-histories formulation. The framework is very close to that for classical stochastic processes like Brownian motion, and its interpretation requires neither measurement nor state-vector as a basic notion. The rules for forming probabilities are nonclassical in two ways: they use complex amplitudes, and they (apparently unavoidably) require one to truncate the histories at a collapse time, which can be chosen arbitrarily far into the future. Adapting this framework to gravity yields a formulation of quantum gravity with a fully spacetime character, thereby overcoming the frozen nature of the canonical formalism. Within the proposed adaptation, the value of the collapse time is identified with total elapsed spacetime four-volume. Interestingly, this turns the cosmological constant into an essentially classical constant of integration, removing the need for microscopic fine tuning to obtain an experimentally viable value for it. Some implications of the V = T rule for quantum cosmology are also discussed.  相似文献   

4.
The Dirac spinors and matrices are used in combination with the Arnowitt-Deser-Misner formalism in order to obtain yet another formulation of Hamiltonian general relativity, together with a new form of the Gauss-Codazzi equations. The relation with Ashtekar's variables is analyzed; it is shown, for instance, that the matrices are equivalent to the electric field variable. The electric and magnetic decomposition of the gravitational field is also studie using Dirac matrices.  相似文献   

5.
A quadratic space is a generalization of a Hilbert space. The geometry of certain kinds of subspaces (closed, splitting, etc.) is approached from the purely lattice theoretic point of view. In particular, theorems of Mackey and Kaplansky are given purely lattice theoretic proofs. Under certain conditions, the lattice of closed elements is a quantum proposition system (i.e., a complete orthomodular atomistic lattice with the covering property).  相似文献   

6.
We study the spectrum of appropriate reduced density matrices for a model consisting of one quantum particle (electron) in a classical fluid (of protons) at thermal equilibrium. The quantum and classical particles interact by a shortrange, attractive potential such that the quantum particle can form atomic bound states with a single classical particle. We consider two models for the classical component: an ideal gas and the cell model of a fluid. We find that when the system is at low density the spectrum of the electron-proton pair density matrix has, in addition to a continuous part, a discrete part that is associated with atomic bound states. In the high-density limit the discrete eigenvalues disappear in the case of the cell model, indicating the existence of pressure ionization or a Mott effect according to a general criterion for characterizing bound and ionized electron-proton pairs in a plasma proposed recently by M. Girardeau. For the ideal gas model, on the other hand, eigenvalues remain even at high density.  相似文献   

7.
We investigate the Finkelstein-Misner geons for a non-simply-connected space-time manifold (M, g 0). We use relations between different Lorentzian structures unequivalent tog 0 and topological properties ofM given by the Morse theory. It implies that to some pieces of geons we have to associate Wheeler's worm-holes. Geons that correspond to time-orientable Lorentz structures are related tog 0 by Morse functions that describe the attaching of a handle of index one. In the case of geons associated to time-nonorientable Lorentzian structures, appropriate handles are related to loops along which the notion of time reverses. If we assume electromagnetic properties of geons, then only four species, v, e, p, m, of different geons can exist and geon m has to decay according to mv+p+e.  相似文献   

8.
The present status of self-dual monopoles is reviewed with a particular attention to a duality conjecture.Invited talk at the International Symposium Selected Topics in Quantum Field Theory and Mathematical Physics, Bechyn, Czechoslovakia, June 14–21, 1981.  相似文献   

9.
In connection with another article by the author, we show how it might be possible to travel faster than the speed of light. We show that for clocks and rods moving faster than the speed of light, we get instead of time dilation and Lorentz contraction, respectively, time contraction and Lorentz expansion, respectively. It is shown that this paper is in confirmation with earlier articles dealing with this subject.  相似文献   

10.
On the basis of Mackey's axiomatic approach to quantum physics or, equivalently, of a state-event-probability (SEVP) structure, using a quite standard fuzzification procedure, a set of unsharp events (or effects) is constructed and the corresponding state-effect-probability (SEFP) structure is introduced. The introduction of some suitable axioms gives rise to a partially ordered structure of quantum Brouwer-Zadeh (BZ) poset; i.e., a poset endowed with two nonusual orthocomplementation mappings, a fuzzy-like orthocomplementation, and an intuitionistic-like orthocomplementation, whose set of sharp elements is an orthomodular complete lattice. As customary, by these orthocomplementations the two modal-like necessity and possibility operators are introduced, and it is shown that Ludwig's and Jauch-Piron's approaches to quantum physics are interpreted in complete SEFP. As a marginal result, a standard procedure to construct a lot of unsharp realizations starting from any sharp realization of a fixed observable is given, and the relationship among sharp and corresponding unsharp realizations is studied.  相似文献   

11.
Various meanings of the terms phase and phase transition encountered in scientific literature are discussed. These terms supplement each other and cover only together all the macroscopic situations which are now denoted by this term.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 67–71, August, 1988.  相似文献   

12.
In order to model any macroscopic system, it is necessary to aggregate both spatially and taxonomically. If average processes are assumed, then kinetic equations of population dynamics can be derived. Much effort has gone into showing the important effects introduced by non-average effects (fluctuations) in generating symmetry-breaking transitions and creating structure and form. However, the effects of microscopic diversity have been largely neglected. We show that evolution will select for populations which retain variability, even though this is, at any given time, loss-making, predicting that we shall not observe populations with optimal behavior, but populations which can learn. This lesser short-term efficiency may be why natural diversity is so great. Evolution is seen to be driven by the noise to which it leads.  相似文献   

13.
Three claims about what makes a theory physically complete are (1) Shimony's assertion that a complete theory says all there is to say about nature; (2) EPR's requirement that a complete theory describe all elements of reality; and (3) Ballentine and Jarrett's claim that a predictively complete theory must obey a condition used in Bell deviations. After introducing statistical completeness as a partial formalization of (1), we explore the logical and motivational relationships connecting these completeness conditions. We find that statistical completeness motivates but does not imply Jarrett's completeness condition, because Jarrett's condition encodes further intuitions about locality and causality. We also dispute Ballentine and Jarrett's claim that EPR-completeness implies Jarrett's completeness condition.  相似文献   

14.
The explicit form of the conformal-invariant phase shift analysis in thes-channel for a scattering process involving two incoming and two outgoing particles is derived for the two-dimensional world model. The high energy behaviour of the scattering amplitudes is determined completely (up to a constant factor) by the requirement of conformal invariance. It is not possible to obtain this high energy limit by neglecting the masses right from the beginning. The main mathematical problem is the determination of the Clebsch-Gordan coefficients forSU 0(1, 1) in the momentum basis.  相似文献   

15.
Understanding quantum theory as a general theory of prediction, we reconstruct abstract quantum theory. Abstract means the general frame of quantum theory, without reference to a three-dimensional position space, to concepts like particle or field, or to special laws of dynamics. Reconstruction is the attempt to do this by formulating simple and plausible postulates on prediction in order to derive the basic concepts of quantum theory from them. Thereby no law of classical physics is presupposed which would then have to be quantized. We briefly discuss the relationship of theory and interpretation in physics and the fundamental role of time as a basic concept for physics. Then a number ofassertions are given, formulated as succinctly as possible in order to make them easily quotable and comparable. The assertions are arranged in four groups: heuristic principles, verbal definitions of some terms, three basic postulates, and consequences. The three postulates of separable alternatives, indeterminism, and kinematics are the central points of this work. These brief assertions are commented upon, and their relationship with the interpretation of quantum theory is discussed. Also given are an outlook on the further development into concrete quantum theory and some philosophical reflections.  相似文献   

16.
This article studies the Schrödinger equation for an electron in a lattice of ions with an external magnetic field. In a suitable physical scaling the ionic potential becomes rapidly oscillating, and one can build asymptotic solutions for the limit of zero magnetic field by multiple scale methods from homogenization. For the time-dependent Schrödinger equation this construction yields wave packets which follow the trajectories of the semiclassical model. For the time-independent equation one gets asymptotic eigenfunctions (or quasimodes) for the energy levels predicted by Onsager's relation.  相似文献   

17.
All gauge theories need somethingfixed even as something changes.Underlying the implementation of these ideas all majorphysical theories make indispensable use of anelaborately designed spacetime model as the something fixed,i.e., absolute. This model must provide at least thefollowing sequence of structures: point set, topologicalspace, smooth manifold, geometric manifold, base forvarious bundles. The fine structure ofspacetime inherent in this sequence is of courseempirically unobservable directly, certainly whenquantum mechanics is taken into account. This issue isat the basis of the difficulties in quantizing generalrelativity and has been approached in many differentways. Here we review an approach taking into account thenon-Boolean properties of quantum logic when forming a spacetime model. Finally, we recall how thefundamental gauge of diffeomorphisms (the issue ofgeneral covariance vs. coordinate conditions) raiseddeep conceptual problems for Einstein in his earlydevelopment of general relativity. This is clearlyillustrated in the notorious holeargument. This scenario, which does not seem to bewidely known to practicing relativists, is neverthelessstill interesting in terms of its impact for fundamental gaugeissues.  相似文献   

18.
Particle creation by a black hole is described in terms of temperature corrections to the Casimir effect. The results of Levin, Polevoy, and Ritov for spectral and total Poynting vector for a fluctuating electromagnetic field in a plane vacuum gap between two arbitrary media with different temperatures in flat spacetime are applied to clarify the situation that exists between the horizon of a nonrotating black hole and spatial infinity. This helps to reveal the mechanism of particle creation. The Hawking radiation is born inside the bell formed by a potential barrier of a black hole in all the region [2M, ]. Its blackbody spectrum is due to the interaction of field fluctuations with the surface of the bell. The particles between the walls are virtual ones. They can become real after passing through the [3M, ] tail, appearing to an observer at future infinityJ + as real ones. The arguments for and against the present standpoint are discussed.  相似文献   

19.
Using the electronic density functional method (EDFM), it is shown that as hydrogen atoms approach to interatomic distance of 2.4a 0 a bond charge forms in the spin polarized (antiferromagnetic) biradical state, after which there is a jump-like electronic phase transition to the spincompensated (covalent) state typical for a chemical bond. The electronic phase transition is calculated in two approximations for the electronic density: superposition of atomic densities and bond charge. The formation of a bond charge stabilizes the hydrogen molecule due to the decrease in the nonelectrostatic (quantum) energy of electrons.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 24–27, October, 1982.  相似文献   

20.
The formula for the horizon of a Newtonian dark body is given and compared to that of a relativistic black hole: a Newtonian dark body has at least one hair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号