首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single crystals of [UO2SO4{(CH3)HNCONH(CH3)}2] (I) were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 6.847(1) Å, b = 14.259(3) Å, c = 14.297(3) Å, β = 93.451(4)°, space group P21/n, Z = 4. The main structural units of crystals I are ribbons whose composition coincides with the composition of the compound. The crystal chemical formula of the complex is AT3M 2 1 (A = UO 2 2+ ).  相似文献   

2.
A new complex [UO2CrO4{CH3CON(CH3)2}2] (I) was studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are monoclinic: a = 13.8108(11) Å, b = 8.6804(7) Å, c = 13.0989(10) Å, β = 104.777(1)°, V = 1518.4(2) Å3, space group P21/c, Z = 4, R = 2.39%. The structure of I contains infinite chains of the [UO2CrO4{CH3CON(CH3)2}2] composition running along [001]; the complex belongs to the AT11M1 2 crystal-chemical group (A = UO 2 2+ , T11 = CrO 4 2? , M1 = CH3CON(CH3)2) of uranyl complexes. The chains are linked into a three-dimensional framework due to hydrogen bonds between oxygen atoms of chromate ions and hydrogen atoms of methyl groups of the dimethylacetamide.  相似文献   

3.
Compound [VO(acac)2] reacts with the Schiff bases N′-(5-bromo-2-hydroxybenzylidene)-2-hydroxy-3-methylbenzohydrazide (H2Bhm) and 4-bromo-2-[(2-piperidin-1-ylethylimino)methyl]phenol (HBpp) in absolute methanol to give the oxovanadium(V) complexes [VO(Bhm)(OCH3)(CH3OH)] (I) and [VO2(Bpp)] (II), respectively. Both complexes were characterized by elemental analysis, IR spectra, and single-crystal X-ray determination. The crystal of I crystallizes in the triclinic space group \(P\bar 1\) with a = 7.625(2), b = 11.240(3), c = 12.156(4) Å, α = 77.404(5)°, β = 75.770(4)°, γ = 79.922(5)°, V = 977.4(5) Å3, Z = 2. The crystal of II crystallizes in the monoclinic space group P2/c with a = 26.760(3), b = 6.655(1), c = 17.570(2) Å, β = 100.335(2)°, V = 3078.2(7) Å3, Z = 8. The V atom in I is in an octahedral coordination, and those in II are intervenient between square pyramidal and trigonal bipyramidal coordination.  相似文献   

4.
The composition and structure of the products of the reaction of titanium tetrafluoride with Ph2P(O)(CH2)2C(O)NМе2 (L), the simplest representative of diphenyl[2-(N,N-dialkylcarbamoyl)ethyl]phosphine oxides, in a СН2Сl2 have been studied by 19F and 31P NMR. It has been shown for the first time that functionalized phosphine oxides form stable seven-membered chelate heterocycles on complexes of d° transition metals. On the basis of NMR data, previously unknown conformational isomerism of the seven-membered TiOPCCCO heterocycle in solution has been proposed. A simple and rather efficient method of synthesis of the ligand (L) from commercially available reagents has been developed.  相似文献   

5.
Binuclear halide complexes (N-Me(2,2'-BipyH)2[Bi2X10] (X = Cl (I), Br (II); 2,2'-Bipy = 2,2'-bipyridine) are synthesized by the reaction of solutions of [BiX6]3– and (N-Me(2,2'-BipyH)(NO3)2 in 2 M HX. The structure of [Bi2X10]4– anions consists of octahedral fragments {BiX6} linked by two μ2-bridging halide ligands. The structures of the compounds are determined by X-ray diffraction analysis (CIF files CCDC 1455987 (I) and 1455988 (II)). The forbidden gap width E g is determined for complex II from the diffuse reflectance spectrum.  相似文献   

6.
Two novel coordination polymers, namely {[Co(Ttac)0.5(1,4-Bib)(H2O)] · H2O}n (I) and {[La(HTtac)2(2H2O)] · H2O}n (II) (H4Ttac = 4,5-di(3'-carboxylphenyl)-phthalic acid, 1,4-Bib = 1,4-bis(1-imidazoly) benzene), have been designed and successfully prepared via hydrothermal process, and characterized by elemental analyses, IR spectroscopy, and single crystal X-ray diffraction (CIF files CCDC nos. 1039298 (I), 1039300 (II)). Structural analysis reveals that the H4Ttac ligands adopt different coordination modes in the as-synthesized I and II, and thus give rise to the targeted coordination polymers with different configurations. It is worth mentioning that, coordination polymer I is assembled from low-dimensional structures into three-dimensional (3D) via π···π stacking interactions, while three-dimensional coordination polymer II is formed by covalent bonds. Luminescent properties of coordination polymer II have been studied at ambient temperature. Significantly, luminescent measurement indicates that coordination polymer II may be acted as potential luminescent recognition sensors towards Cu2+ and Mn2+ ions.  相似文献   

7.
Reaction of Os2(OAc)4Cl2 with an excess of HDPhF (HDPhF = N,N′-diphenylformamidine) gives a high yield of Os2(DPhF)4Cl2 (1), which can be converted to its azido analog, Os2(DPhF)4(N3)2 (3), by treatment with NaN3. We report a major improvement on the preparation of Os2(chp)4Cl (2; Hchp = 2-chloro-6-hydroxypyridine) by synthesizing the compound in the reducing solvent ethanol. Reaction of 2 with NaN3 affords the azido complex Os2(chp)4N3 (4). Compound 3 has been examined by X-ray crystallography, and has an Os–Os bond distance of 2.45 Å, suggesting a (π*)2 ground state for the molecule.  相似文献   

8.
Solvothermal reactions of 2-ppds (2-ppds = di[4-(pyridin-2-yl)pyrimidinyl]disulfide) with ZnX2 (X = Cl, ClO4) in mixed CH3OH–CH2Cl2 solvent have been investigated. To better understand these reactions, solution analysis was conducted in parallel with single-crystal X-ray diffraction analysis of the in situ generated coordination complexes. At 120 °C, solvothermal reaction of 2-ppds with ZnCl2 resulted in a discrete mononuclear coordination complex formulated as [ZnCl2(L1)] (1), in which the zwitterion L1 (1-methyl-4-(pyridin-2-yl)pyrimidin-1-ium-2-olate) was formed in situ from 2-ppds, and solution analyses based on TLC and ESI–MS further showed that the reaction solution also contains in situ transformed products of L2 (bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane) and L3 (2-methoxy-4-(pyridin-2-yl)pyrimidine). At 90 °C, solvothermal reaction between 2-ppds and Zn(ClO4)2 led to a discrete mononuclear coordination complex formulated as [Zn(SH)(L2)]ClO4 (2) that features a terminally bound –SH group, while the reaction solution was also found to contain a library of in situ reaction products of 2-ppds including L1, L2, L3 and L4 ((4-(pyridin-2-yl)pyrimidin-2-yl) 4-(pyridin-2-yl)pyrimidine-2-sulfonothioate). Thus, the heterocyclic disulfide 2-ppds is transformed in situ into various organic products in a series of reactions involving C–S/S–S bond cleavage.  相似文献   

9.
Two isomers of Ru5(C)(CO)14(O2CC6H5)(μ-H): Ru5(C)(CO)142-O2CC6H5)(μ-H), 2 and Ru5(C)(CO)14(μ-O2CC6H5)(μ-H), 3 were obtained from the reaction of Ru5(C)(CO)15 with benzoic acid (PhCO2H). Both compounds were characterized structurally by X-ray diffraction analysis. Compound 2 contains an opened pentaruthenium cluster with a chelating benzoate ligand on the ruthenium atom that was opened. Compound 3 contains an opened pentaruthenium cluster with a benzoate ligand on that bridges a pair of ruthenium atoms which are not mutually bonded. Compound 2 can be converted partially to 3 and 3 partially back to 2 and they form a 1.54/1.0 ratio (3/2) at equilibrium in solution at 95 °C.  相似文献   

10.
Tris(5-bromo-2-methoxyphenyl)bismuth dicarboxylates [(C6H3(Br-5)(MeO-2)]3Bi[OC(O)CHal3]2, Hal = F (II) and Cl (III), have been synthesized by the reaction between tris(5-bromo-2-methoxyphenyl)bismuth (I) and trifluoroacetic acid and thrichloroacetic acid, respectively, in the presence of hydrogen peroxide in ether. According to X-ray diffraction data, a crystal of complex I contains two types of crystallographically independent molecules (a and b) both with a trigonal pyramid configuration. The bismuth atoms in complexes II and III have a distorted trigonal bipyramidal coordination with carboxylate substituents in axial positions. Axial OBiO angles are 166.3(3)° (II) and 171.6(2)° (III); equatorial CBiC angles are 118.0(3)°–123.1(3)° (II) and 113.6(3)°–127.4(3)° (III). Bi–C bond lengths are 2.189(7)–2.200(8) Å (II) and 2.190(8)–2.219(7) Å (III), and Bi–О distances are 2.280(6), 2.459(16) Å (II) and 2.264(5), 2.266(5) Å (III). Intramolecular contacts between the central atom and the oxygen atoms of carbonyl groups (Bi···O 3.028(9), 3.162(9) Å (II); 3.117(9), 3.202(9) Å (III)) are observed at maximum equatorial angles. The oxygen atoms of methoxy groups are coordinated to the bismuth atom. The Bi···O distances in complexes II and III (3.028(16), 3.157(16), 3.162(16) and 3.17(16), 3.143(16), 3.202(16) Å, respectively) are slightly longer than in complex I (3.007(9)–3.136(4) Å).  相似文献   

11.
The products resulting from the reaction of TiF4 with Ph2P(O)(CH2)2C(O)Me (L') in CH2Cl2 have been studied by 19F{1H} and 31P{1H} NMR spectroscopy. At a twofold excess of L', solution contains cis-TiF4(L')2 (>90%), trans-TiF4(L')2, and fac-[TiF3L3']+, where L' is coordinated via the P=O group, as well as the dimer [(Ti2F7L'2)2]+, where L' is coordinated through the P=O and C=O groups. An equimolar solution contains dimeric and polynuclear complexes containing moieties with three terminal cis fluorine ions, while the other coordination sites are occupied by the P=O groups and F bridges. At a twofold excess of TiF4, ligand L' coordinates via the P=O and C=O groups and behaves as a bridge along with F ions. Thermodynamic stability of the structures of the TiF4L'2 isomers and the structure of [(µ-F)(µ-L')2(TiF3)2]+ has been calculated.  相似文献   

12.
The structure of four new palladium complexes [Pd(HL 2 )Cl 2 and Pd(L 1–3 ) 2 ] with 3-(2-pyridyl)-5-R-1,2,4-triazoles (R=H, CH3, Ph respectively HL 1 , HL 2 , HL 3 ) was proposed based on IR, NMR, UV spectroscopy and MALDI mass spectrometry data analysis. It is found that the complexation of HL 2 and HL 3 with Pd2+ ions results in a decrease of their fluorescence intensity and it is vice versa in case of HL 1 . Furthermore, the influence of the substituent (R) in the 3-(2-pirydyl)-5-R-1,2,4-triazoles on the fluorescent and protolytic properties of HL 1–3 was investigated.  相似文献   

13.
The adducts [Cp2Y(μ-Cl)]2 · 2THF (5), {[Cp2Y(μ-Cl)]2 · 1,4-dioxane}n (6), and Cp2Y(DME)(μ-Cl)(Cl)YCp2 (7) have been synthesized and studied by X-ray crystallography. In 5, the (Cp2YCl)2 moiety is coordinated to two THF molecules (d (Y-O) = 2.478 Å); in 6 the (Cp2YCl)2 dimers are linked by 1,4-dioxane to form a polymer chain (d (Y-O) = 2.601 Å). In asymmetric adduct 7, the DME molecule is bound through both O atoms to the same Y atom (d (Y-O) = 2.382 and 2.448 Å), and one of the chlorine atoms is bridging and the other chlorine atom is terminal.  相似文献   

14.
The two-quantum photochemistry of aqueous solutions of cis,trans-[PtIV(en)(I)2(CH3COO)2] (complex 1) has been studied by laser flash photolysis using an irradiation wavelength of 355 nm. This compound can be considered as a model representative of the mixed-ligand Pt(IV) complexes tested for use in photodynamic therapy. The appearance of transient absorption, presumably due to two consecutively produced Pt(III) complexes, has been revealed. The spectral and kinetic characteristics of the intermediates have been determined. A mechanism of two-quantum photolysis of complex 1 is proposed on the basis of the data obtained.  相似文献   

15.
A series of twist linear tetranuclear 3d–4f Co 2 III Ln 2 III [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)] complexes have been prepared under solvothermal conditions and structurally characterized with Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L). The two central Co ions are linked by two alkoxyl oxygen atoms, and one Ln ion lying above and the other below the Co–Co dimer, form a twist linear array. The magnetic susceptibility studies reveal antiferromagnetic or ferromagnetic behaviour, whilst dynamic magnetic studies indicate no slow magnetic relaxation for these complexes.  相似文献   

16.
Different molecular assemblies were compared in two new structures [4-CH3-C6H4C(O)NH]P(O)[NH]2(CH2)3, 1, and [4-CH3-C6H4C(O)NH]P(O)[NHC6H3(3,4-CH3)2]2, 2, belonging to the families of “cyclic phosphoric triamide” and “phosphoric triamide”, respectively. The differences in the hydrogen bond motifs were discussed (by single crystal X-ray diffraction) as a result of three factors: (1) action of two N atoms with a non-planar environment in 1 as an H-bond acceptor, (2) different orientations of three N–H bond vectors in two molecules and (3) different conformations of C=O and P=O groups. These differences lead to more complicated hydrogen bond pattern of 1, with respect to that of 2, as structure 1 may be considered as a model of four-acceptor–three-donor versus a two-acceptor–three-donor system in 2. The main discrepancies of 1 and 2, monitored by the Hirshfeld surface analysis, are related to the contribution portions of O···H/H···O contacts, in which compound 1 not only involves the greater existence of classical hydrogen bonds but also contains the further C–H···O weak interactions in its crystal packing with respect to compound 2. Instead, in 2, the shortage of O···H/H···O contacts has been partially compensated by the C···H/H···C interactions, due to the presence of more unsaturated carbon acceptors. The differences in assemblies are also reflected in the solid-state IR spectra, especially for the N–H vibration frequencies. The new compounds were further studied by 1D NMR experiments (1H, 13C, 31P), 2D NMR techniques [HMQC and HMBC (H–C correlation), HSQC (N–H correlation)], high-resolution ESI–MS, EI–MS spectrometry and IR spectroscopy.  相似文献   

17.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

18.
Powder and single crystal X-ray diffraction studies have been performed for anhydrous nitrate complexes Rb2[Pd(NO3)4] (I) and Cs2[Pd(NO3)4] (II). Crystal data for I: a = 7.843(1) Å, b = 7.970(1) Å, c = 9.725(1) Å; β = 100.39(1)°, V = 597.9(1) Å 3, space group P21/c, Z = 2, d calc = 2.918 g/cm3; for II: a = 10.309(2) Å, b = 10.426(2) Å, c = 11.839(2) Å; β = 108.17(3)°, V = 1209.0(4) Å3, space group P21/c, Z = 4, d calc = 3.408 g/cm3. The structures are formed by isolated [Pd(NO3)4]2? complex anions and alkali metal cations. The plane-square environment of the Pd atom is formed from the oxygen atoms of the monodentate nitrate groups. The geometrical characteristics of the complex anions are analyzed. Compound II has a short contact Pd...Cs 3.252 Å.  相似文献   

19.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

20.
The complexes [Fe(DfgH)2(3-CONH2-Py)2] (I) and [Fe(DfgH)2(4-COOC2H5-Py)2] (II), where DfgH2 is α-benzyl dioxime, were obtained and examined by X-ray diffraction analysis. The equatorial planes of the coordination octahedra of the metal ions consist of two monodeprotonated α-benzyl dioxime residues united through intramolecular hydrogen bonds O-H…O into a pseudomacrocyclic system. The neutral molecules 3-CONH2-Py and 4-COOC2H5-Py are coordinated to the Fe2+ ion through the N atom of the heterocycle. Structure I is layered and structure II is molecular. Intermolecular interactions N-H…O are responsible for the formation of layers in crystal structure I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号