首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We propose a relaxation rate or dissipative cavity-based parameters that can be used as indicators of the stationary limit of a mixed state geometric phase. We perform our considerations for the system of a superconducting qubit in an open transmission line or interacting with a dissipative cavity. This system is very useful for performing an effective quantum computation by exhibiting the long collapse time of the geometric phase. It is shown that the geometric phase in the stationary limit does not depend on interaction time if the decay time exceeds an upper bound.  相似文献   

2.
We analyze the influence of a dissipative environment on geometric phases in a quantum system subject to non-adiabatic evolution. We find dissipative contributions to the acquired phase and modification of dephasing, considering the cases of both weak short-correlated noise and slow quasi-stationary noise. Motivated by recent experiments, we find the leading non-adiabatic corrections to the results, known for the adiabatic limit.  相似文献   

3.
A hybrid quantum architecture was proposed to engineer a localization-delocalization phase transition of light in a two-dimension square lattices of superconducting coplanar waveguide resonators, which are interconnected by current-biased Josephson junction phase qubits. We find that the competition between the on-site repulsion and the nonlocal photonic hopping leads to the Mott insulator-superfluid transition. By using the mean-field approach and the quantum master equation, the phase boundary between these two different phases could be obtained when the dissipative effects of superconducting resonators and phase qubit are considered. The good tunability of the effective on-site repulsion and photon-hopping strengths enable quantum simulation on condensed matter physics and many-body models using such a superconducting resonator lattice system. The experimental feasibility is discussed using the currently available technology in the circuit QED.  相似文献   

4.
By analyzing an instructive example, for testing many concepts and approaches in quantum mechanics, of a one-dimensional quantum problem with moving infinite square-well, we define geometric phase of the physical system. We find that there exist three dynamical phases from the energy, the momentum and local change in spatial boundary condition respectively, which is different from the conventional computation of geometric phase. The results show that the geometric phase can fully describe the nonlocal character of quantum behavior.  相似文献   

5.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

6.
Arun Kumar Pati 《Pramana》1994,42(6):455-465
The concept of a curve traced by a state vector in the Hilbert space is introduced into the general context of quantum evolutions and its length defined. Three important curves are identified and their relation to the dynamical phase, the geometric phase and the total phase are studied. These phases are reformulated in terms of the dynamical curve, the geometric curve and the natural curve. For any arbitrary cyclic evolution of a quantum system, it is shown that the dynamical phase, the geometric phase and their sums and/or differences can be expressed as the integral of the contracted length of some suitably-defined curves. With this, the phases of the quantum mechanical wave function attain new meaning. Also, new inequalities concerning the phases are presented.  相似文献   

7.
On the basis of the phase formulation, we find the quantum and classical exact solutions and corresponding total phases for the Klein-Gordon (KG) field with a time-dependent Hamiltonian. The total phase includes both the dynamical and geometric phases (Abaronov-Anandan phase). The connection between the quantum and classical solutions is then obtained. From this connection, we discuss the condition under which the geometric phase for the KG field can be defined.  相似文献   

8.
We propose a new type of interferometry, based on geometric phases accumulated by a periodically driven two-level system undergoing multiple Landau-Zener transitions. As a specific example, we study its implementation in a superconducting charge pump. We find that interference patterns appear as a function of the pumping frequency and the phase bias, and clearly manifest themselves in the pumped charge. We also show that the effects described should persist in the presence of realistic decoherence.  相似文献   

9.
In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.  相似文献   

10.
In this paper, we explore the dynamical properties of geometric phase for a composite quantum system under the nonlocal unitary evolution. As an illustrative example, the analytical expressions of geometric phase are derived for the dimer system. We find that geometric phase presents some interesting properties with coupling strengths (corresponding to nonlocal unitary evolution), such as dynamical oscillation behavior with time evolution, monotonicity, symmetry, etc. We show that the geometric phase and entanglement have the same period for some conditions. Moreover, we discuss geometric phase of the whole system and its subsystems. Our investigations show that geometric phase can reflect some inherent properties of the system: it signals a transition from self-trapping to delocalization.  相似文献   

11.
By using of the invariant theory, we have studied the geometric phase in a time-dependent system with Higgs algebra structure, the dynamical and geometric phases are given, respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution. The disappearing condition of the geometric phase is given.  相似文献   

12.
By using of the invariant theory, we have studied the geometric phase in a time-dependent system with Higgs algebra structure, the dynamical and geometric phases are given, respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution. The disappearing condition of the geometric phase is given.  相似文献   

13.
We present an alternative quantum treatment for a generalized mesoscopic RLC circuit with time-dependent resistance, inductance and capacitance. Taking advantage of the Lewis and Riesenfeld quantum invariant method and using quadratic invariants we obtain exact nonstationary Schrödinger states for this electromagnetic oscillation system. Afterwards, we construct coherent and squeezed states for the quantized RLC circuit and employ them to investigate some of the system’s quantum properties, such as quantum fluctuations of the charge and the magnetic flux and the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary mesoscopic circuit. Finally we evaluate the dynamical and Berry phases for three special circuits. Surprisingly, we find identical expressions for the dynamical phase and the same formulae for the Berry’s phase.  相似文献   

14.
We investigate the geometric phase or Berry phase acquired by a spin half which is both subject to a slowly varying magnetic field and weakly coupled to a dissipative environment (either quantum or classical). We study how this phase is modified by the environment and find that the modification is of a geometric nature. While the original Berry phase (for an isolated system) is the flux of a monopole field through the loop traversed by the magnetic field, the environment-induced modification of the phase is the flux of a quadrupolelike field. We find that the environment-induced phase is complex, and its imaginary part is a geometric contribution to dephasing. Its sign depends on the direction of the loop. Unlike the Berry phase, this geometric dephasing is gauge invariant for open paths of the magnetic field.  相似文献   

15.
By using the Lewis-Riesenfeld invariant theory, we have studied the dynamical and the geometric phases in the interaction system of multi-atom in micro-cavity with single-mode photon field. We find that the geometric phases in a cycle case have nothing to do with the frequency of the photon field, the coupling coefficient between photons and atoms, and the atom transition frequency.  相似文献   

16.
The electronic and lattice dynamical properties of compressed solid SiH4 have been calculated in the pressure range up to 300 GPa with density functional theory. We find two energetically preferred insulating phases with P2(1)/c and Fdd2 symmetries at low pressures. We demonstrate that the Cmca structure having a layered network is the most likely candidate of the metallic phase of SiH4 over a wide pressure range above 60 GPa. The superconducting transition temperature in this layered metallic phase is found to be in the range of 20-75 K.  相似文献   

17.
By using of the invariant theory, we have studied the geometric phase in a time-dependent system with Laguerre polynomial state, the dynamical and geometric phases are given, respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.  相似文献   

18.
By using the Lewis–Riesenfeld invariant theory, we have studied the dynamical and the geometric phases in the interaction system of multi-atom with single-mode photon field with imaginary photon process. We find that the geometric phases in a cycle case have nothing to do with the frequency of the photon field, the coupling coefficient between photons and atoms, and the atom transition frequency. If we use the more accuracy device, the geometric phases in the imaginary photon process may be observed, and the geometric phases in this process have the observable physical effect.  相似文献   

19.
To study the effect of disorder on quantum phase slips (QPSs) in superconducting wires, we consider the plasmon-only model where disorder can be incorporated into a first-principles instanton calculation. We consider weak but general finite-range disorder and compute the form factor in the QPS rate associated with momentum transfer. We find that the system maps onto dissipative quantum mechanics, with the dissipative coefficient controlled by the wave (plasmon) impedance Z of the wire and with a superconductor-insulator transition at Z = 6.5 k. We speculate that the system will remain in this universality class after resistive effects at the QPS core are taken into account.  相似文献   

20.
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号