首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we prove the existence of infinitely many small solutions to the following quasilinear elliptic equation ?Δ p(x) u +  |u| p(x)-2 uf (x, u) in a smooth bounded domain Ω of ${\mathbb{R}^N}$ with nonlinear boundary conditions ${|\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = |u|^{{q(x)-2}}u}$ . We also assume that ${\{q(x) = p^\ast(x)\}\neq \emptyset}$ , where p*(x) =  Np(x)/(N ? p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountain-pass lemma due to Kajikiya, and property of these solutions is also obtained.  相似文献   

2.
Properties of generalized solutions of model nonlinear elliptic systems of second order are studied in the semiball $B_1^ + = B_1 (0) \cap \{ x_n > 0\} \subset $ ? n , with the oblique derivative type boundary condition on $\Gamma _1 = B_1 (0) \cap \{ x_n = 0\} $ . For solutionsuH 1(B 1 + ) of systems of the form $\frac{d}{{dx_\alpha }}a_\alpha ^k (u_x ) = 0, k \leqslant {\rm N}$ , it is proved that the derivatives ux are Hölder in $B_1^ + \cup \Gamma _1 )\backslash \Sigma $ , where Hn?p(σ)=0,p>2. It is shown for continuous solutions u from H1(B1/+) of systems $\frac{d}{{dx_\alpha }}a_\alpha ^k (u,u_x ) = 0$ that the derivatives ux are Hölder on the set $(B_1^ + \cup \Gamma _1 )\backslash \Sigma , dim_\kappa \Sigma \leqslant n - 2$ . Bibliography: 13 titles.  相似文献   

3.
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f’(u) > 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.  相似文献   

4.
In this paper we describe the class of commuting pairs of bounded linear operators {A 1,A 2} acting on a Hilbert space H which are unitarily equivalent to the system of integrations over independent variables $$ (\tilde A_1 f)(x,y) = i\int_x^a {f(t,y)} dt, (\tilde A_2 f)(x,y) = i\int_y^b {f(x,s)} ds $$ in $ L_{\Omega _L }^2 $ , where ?? L is the compact set in ? + 2 bounded by the lines x = a and y = b and by a decreasing smooth curve L = {((x, p(x)): p(x) ?? C [0,a] 1 , p(0) = b, p(a) = 0}.  相似文献   

5.
We consider the following anisotropic sinh-Poisson equation $${\rm div} (a(x) \nabla u)+ 2\varepsilon^2 a(x) {\rm sinh}\,u=0\ \ {\rm in}\ \Omega, \quad u=0 \ \ {\rm on}\ \partial \Omega,$$ where ${\Omega \subset \mathbb{R}^2}$ is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient ${a(x)}$ on the existence of bubbling solutions. We show that there exists a family of solutions u ?? concentrating positively and negatively at ${\bar{x}}$ , a given local critical point of a(x), for ?? sufficiently small, for which with the property $$2\varepsilon^2a(x){\rm sinh} u_\varepsilon \rightharpoonup 8\pi\sum\limits_{j=1}^{m}b_j\delta_{\bar{x}},$$ where ${b_j=\pm 1}$ . This result shows a striking difference with the isotropic case (a(x) ?? Constant) in Bartolucci and Pistoia (IMA J Appl Math 72(6):706?C729, 2007), Jost et?al. (Calc Var Partial Differ Equ 31:263?C276, 2008) and Esposito and Wei (Calc Var Partial Differ Equ 34:341?C375, 2009).  相似文献   

6.
Let n ≥ 3, 0 < m ≤ (n ? 2)/n, p > max(1, (1 ? m)n/2), and ${0 \le u_0 \in L_{loc}^p(\mathbb{R}^n)}$ satisfy ${{\rm lim \, inf}_{R\to\infty}R^{-n+\frac{2}{1-m}} \int_{|x|\le R}u_0\,dx = \infty}$ . We prove the existence of unique global classical solution of u t = Δu m , u > 0, in ${\mathbb{R}^n \times (0, \infty), u(x, 0) = u_0(x)}$ in ${\mathbb{R}^n}$ . If in addition 0 < m < (n ? 2)/n and u 0(x) ≈ A|x|?q as |x| → ∞ for some constants A > 0, qn/p, we prove that there exist constants α, β, such that the function v(x, t) = t α u(t β x, t) converges uniformly on every compact subset of ${\mathbb{R}^n}$ to the self-similar solution ψ(x, 1) of the equation with ψ(x, 0) = A|x|?q as t → ∞. Note that when m = (n ? 2)/(n + 2), n ≥ 3, if ${g_{ij} = u^{\frac{4}{n+2}}\delta_{ij}}$ is a metric on ${\mathbb{R}^n}$ that evolves by the Yamabe flow ?g ij /?t = ?Rg ij with u(x, 0) = u 0(x) in ${\mathbb{R}^n}$ where R is the scalar curvature, then u(x, t) is a global solution of the above fast diffusion equation.  相似文献   

7.
Let ${{\bf D}_{\bf x} := \sum_{i=1}^n \frac{\partial}{\partial x_i} e_i}$ be the Euclidean Dirac operator in ${\mathbb{R}^n}$ and let P(X) = a m X m + . . . + a 1 Xa 0 be a polynomial with real coefficients. Differential equations of the form P(D x )u(x) = 0 are called homogeneous polynomial Dirac equations with real coefficients. In this paper we treat Dirichlet type problems of the a slightly less general form P(D x )u(x) = f(x) (where the roots are exclusively real) with prescribed boundary conditions that avoid blow-ups inside the domain. We set up analytic representation formulas for the solutions in terms of hypercomplex integral operators and give exact formulas for the integral kernels in the particular cases dealing with spherical and concentric annular domains. The Maxwell and the Klein–Gordon equation are included as special subcases in this context.  相似文献   

8.
We characterize all the real numbers a, b, c and 1 ?? p, q, r < ?? such that the weighted Sobolev space $$W_{\{ a,b\} }^{\{ q,q\} }({R^N}\backslash \{ 0\} ): = \{ u \in L_{loc}^1({R^N}\backslash \{ 0\} ):{\left| x \right|^{a/q}} \in {L^q}({R^{N),}}{\left| x \right|^{b/p}}\nabla u \in {({L^p}({R^N}))^N}\} $$ is continuously embedded into $${L^r}({R^N};{\left| x \right|^c}dx): = \{ u \in L_{loc}^1({R^N}\backslash \{ 0\} ):{\left| x \right|^{c/r}}u \in {L^r}({R^N})\} $$ with norm ??·?? c,r . It turns out that, except when N ?? 2 and a = c = b ? p = ?N, such an embedding is equivalent to the multiplicative inequality $${\left\| u \right\|_{c,r}} \le C\left\| {\nabla u} \right\|_{b,p}^\theta \left\| u \right\|_{a,q}^{1 - \theta }$$ for some suitable ?? ?? [0, 1], which is often but not always unique. If a, b, c > ?N, then C 0 ?? (? N ) ? W {a,b} (q,p) (? N {0}) ?? L r (? N ; |x| c dx) and such inequalities for u ?? C 0 ?? (? N ) are the well-known Caffarelli-Kohn-Nirenberg inequalities; but their generalization to W {a,b} (q,p) (? N {0}) cannot be proved by a denseness argument. Without the assumption a, b, c > ?N, the inequalities are essentially new, even when u ?? C 0 ?? (? N {0}), although a few special cases are known, most notably the Hardy-type inequalities when p = q. In a different direction, the embedding theorem easily yields a generalization when the weights |x| a , |x| b and |x| c are replaced with more general weights w a ,w b and w c , respectively, having multiple power-like singularities at finite distance and at infinity.  相似文献   

9.
In this work, we consider the positive solutions to the singular problem $$ \left\{\begin{array}{ll} -\Delta u = am(x)u-f(u) - \dfrac{c}{u^{\alpha}} & {\rm in}\;\Omega,\\ u=0 & {\rm on}\; \partial\Omega, \end{array} \right. $$ where 0?<?α?<?1,a?>?0 and c?>?0 are constants, Ω is a bounded domain with smooth boundary $\partial\Omega$ , Δ is a Laplacian operator, and $f:[0,\infty] \longrightarrow{\mathbb R}$ is a continuous function. The weight functions m(x) satisfies m(x)?∈?C(Ω) and m(x)?>?m 0?>?0 for x?∈?Ω and also ||m||?∞??=?l?<?∞. We assume that there exist A?>?0, M?>?0, p?>?1 such that alu???M?≤?f(u)?≤?Au p for all u?∈?[0,?∞?). We prove the existence of a positive solution via the method of sub-supersolutions when $m_{0}a>\frac{2\lambda_{1} }{1+\alpha}$ and c is small. Here λ 1 is the first eigenvalue of operator ??Δ with Dirichlet boundary conditions.  相似文献   

10.
Boolean formulae in a standard basis {&, ??, ?} with a specified alternation depth are analyzed. The alternation depth of the formula considered as a particular case of a circuit of functional elements is a if the maximum number of variations of the gates?? types on sequences, each being a path and not containing negations connected to the inputs is (a ? 1). The quantity L (a)(n) equal to the minimum complexity of a formula with an alternation depth no greater than a is introduced. It implements the function that is most complex in this sense. It was demonstrated by Lupanov that L (a)(n) is asymptotically equal to $\frac{{2^n }} {{\log _2 n}} $ at a ?? 3. This work reveals the behavior of this function for a ?? 3 at the level of high accuracy asymptotic bounds: $L^{(a)} (n) = \frac{{2^n }} {{\log _2 n}}\left( {1 + \frac{{\log _2^{[a - 1]} n \pm O(1)}} {{\log _2 n}}} \right), $ where $\log _2^{[a - 1]} n = \underbrace {\log _2 ...\log _2 n}_{(a - 1)times}$ with a relative error of $O\left( {\frac{1} {{\log n}}} \right) $ .  相似文献   

11.
In classical theorems on the convergence of Gaussian quadrature formulas for power orthogonal polynomials with respect to a weight w on I =(a,b),a function G ∈ S(w):= { f:∫I | f(x)| w(x)d x < ∞} satisfying the conditions G 2j(x) ≥ 0,x ∈(a,b),j = 0,1,...,and growing as fast as possible as x → a + and x → b,plays an important role.But to find such a function G is often difficult and complicated.This implies that to prove convergence of Gaussian quadrature formulas,it is enough to find a function G ∈ S(w) with G ≥ 0 satisfying sup n ∑λ0knG(xkn) k=1 n<∞ instead,where the xkn ’s are the zeros of the n th power orthogonal polynomial with respect to the weight w and λ0kn ’s are the corresponding Cotes numbers.Furthermore,some results of the convergence for Gaussian quadrature formulas involving the above condition are given.  相似文献   

12.
The Fourier-Bessel integral transform $$g\left( x \right) = F\left[ f \right]\left( x \right) = \frac{1} {{2^p \Gamma \left( {p + 1} \right)}}\int\limits_0^{ + \infty } {t^{2p + 1} f\left( x \right)j_p \left( {xt} \right)dt}$$ is considered in the space $\mathbb{L}_2 \left( {\mathbb{R}_ + } \right)$ . Here, j p (u) = ((2 p Γ(p+1))/(u p ))J p (u) and J p (u) is a Bessel function of the first kind. New estimates are proved for the integral $$\delta _N^2 \left( f \right) = \int\limits_N^{ + \infty } {x^{2p + 1} g^2 \left( x \right)dx, N > 0,}$$ in $\mathbb{L}_2 \left( {\mathbb{R}_ + } \right)$ for some classes of functions characterized by a generalized modulus of continuity.  相似文献   

13.
For the singular operator $$Su = \int_a^b {\frac{{K(x, s) u (s)}}{{s - x}}} ds$$ invariant weight spacesλ α β , p (u(x)∈λ α β , p if 10,u (x) ρ (x)∈ H β 0 , 20.‖uL p0)<∞, ρ (x) = (x?a) (b ?x)1+β, ρ0(x)=(b?x)α(p?1), 0<α, β<1,p>1H 0 β is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.  相似文献   

14.
This paper is concerned with the heat equation in the half-space ? + N with the singular potential function on the boundary, (P) $\left\{ \begin{gathered} \frac{\partial } {{\partial t}}u - \Delta u = 0\operatorname{in} \mathbb{R}_ + ^N \times (0,T), \hfill \\ \frac{\partial } {{\partial x_N }}u + \frac{\omega } {{|x|}}u = 0on\partial \mathbb{R}_ + ^N \times (0,T), \hfill \\ u(x,0) = u_0 (x) \geqslant ()0in\mathbb{R}_ + ^N , \hfill \\ \end{gathered} \right. $ where N ?? 3, ?? > 0, 0 < T ?? ??, and u 0 ?? C 0(? + N ). We prove the existence of a threshold number ?? N for the existence and the nonexistence of positive solutions of (P), which is characterized as the best constant of the Kato inequality in ? + N .  相似文献   

15.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

16.
We expounded an approach for studying the Z ?? ??? and Z ?? ???? decay based on the sum rules for the $Z \to c\bar c \to \gamma \gamma *$ and $Z \to b\bar b \to \gamma \gamma *$ amplitudes and their derivatives. We calculate the branching ratios of the Z ?? ??? and Z ?? ???? decays under different suppositions about the saturation of the sum rules. We find the lower bounds of ?? ?? BR(Z ?? ???) = 1.95 · 10 ?7 and ?? ?? BR(Z ?? ????) = 7.23 · 10?7 and discuss deviations from the lower bounds including the possibility of BR[Z ?? ??J/??(1S)] ?? BR[Z ?? ????(1S)] ?? 10 ?6 , which is probably measurable at the LHC. Moreover, we calculate the angle distributions in the Z ?? ??? and Z ?? ???? decays.  相似文献   

17.
Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, d?? = e h (x) dV (x) the weighted measure and ????,p the weighted p-Laplacian. In this paper we consider the non-linear elliptic equation $$ \Delta _{\mu ,p} u = - \lambda _{\mu ,p} |u|^{p - 2} u $$ for p ?? (1, 2). We derive a sharp gradient estimate for positive smooth solutions of this equation. As applications, we get a Harnack inequality and a Liouville type theorem..  相似文献   

18.
Suppose that on the Interval [a, b] the nodes $$a = x_0< x_1< \ldots< x_m< x_{m + 1} = b$$ are given and the functions u0(t)=ω0(t) $$u_i (t) = \omega _0 (t)\smallint _0^t \omega _1 (\varepsilon _1 )d\varepsilon _1 \ldots \smallint _a^{\varepsilon _{\iota - 1} } \omega _1 (\varepsilon _1 )d\varepsilon _\iota ,\varepsilon _0 = t(i = 1,2, \ldots ,n)$$ where the functions ωi(t)> 0 have continuous (n?i)-th derivatives (i=0, 1, ..., n). Sn,m will designate the subspace of functions that have continuous (n?1)-st derivatives on [a, b] and coincide on each of the intervals [xj, xj+1] (j=0, 1, ..., m) with some polynomial from the system {ui(t)} i=0 n .THEOREM. For every continuous function on [a, b] there exists in Sn,m a unique element of best mean approximation.  相似文献   

19.
We investigate the non-homogeneous modular Dirichlet problem Δ p (·)u(x) = f (x) (where Δ p (·)u(x) = div(|?u|p(x-2)?u(x)) from the functional analytic point of view and we prove the stability of the solutions \({\left( {{u_{{p_i}}}} \right)_i}\) of the equation \({\Delta _{{p_i}\left( \cdot \right)}}{u_{{p_i}\left( \cdot \right)}} = f\) as p i (·) → q(·) via Gamma-convergence of sequence of appropriate functionals.  相似文献   

20.
In this paper, the authors give the boundedness of the commutator [b, ????,?? ] from the homogeneous Sobolev space $\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$ to the Lebesgue space L p (? n ) for 1 < p < ??, where ????,?? denotes the Marcinkiewicz integral with rough hypersingular kernel defined by $\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$ , with ?? ?? L 1(S n?1) for $0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$ or ?? ?? L(log+ L) ?? (S n?1) for $\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$ , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号