首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— The necessary conditions of bleached rhodopsin to activate GTPase and to regenerate α-band were studied by changing the number of bound phospholipids to rhodopsin using gel filtration procedure. The number of bound phospholipids per mole of rhodopsin (bPL/rho) in the eluants was reproducibly controlled by the concentration of sodium deoxycholate (DOC) in the elution buffer. The eluants were soluble complexes composed of rhodopsin with original a-band, disk phospholipids and DOC. The regenerability of α-band depended on bPL/rho but neither on the concentration of DOC nor on state of aggregation of rhodopsin. The lowest number of bPL/rho for this activity under our experimental conditions was estimated to be30–50 in bPL/rho. GTPase was activated only by such complexes that had a nearly original quantity of bPL/rho in disk membranes. Other complexes with less bPL/rho showed aggregation upon bleaching and did not activate GTPase. The amount of phospholipids present in the disk membranes is sufficient to prevent aggregation of rhodopsin upon bleaching.  相似文献   

2.
Abstract— Intact disks and inverted disks were prepared from bovine retinal rods and the distribution in the disk membrane of such enzymes as guanyl cyclase, cyclic nucleotide phosphodiesterase, GTP binding protein (GTPase), 5'-nucleotidase and rhodopsin kinase was investigated. Guanyl cyclase was not detected in the disk; the enzyme activity was high in a membranous fraction containing the cilium or axoneme and the rod outer segment plasma membrane. Cyclic nucleotide phosphodiesterase, GTP binding protein (GTPase) and rhodopsin kinase were associated on the external surface of disk in the presence of 2 m M Mg2+. The enzymes dissociated from the membrane when Mg2+ was depleted. Thus, magnesium ion seems to regulate the state of these enzymes in the outer segment. 5'-Nucleotidase activity was low in intact disks but was significantly enhanced after inversion of the disk. The catalytic site of the enzyme, therefore, must be located on the internal (intradiscal) surface. Since the disks are known to be formed by invagination of the plasma membrane, 5'-nucleotidase, by inference, would have its catalytic site exposed on the external surface of the plasma membrane. Preliminary experiments showed that the capability of light-activated rhodopsin to activate cyclic nucleotide phosphodiesterase was inhibited by phosphorylation of the pigment. This supports the idea that rhodopsin kinase, cyclic nucleotide phosphodiesterase and GTPase exist as a functional complex on rod membranes.  相似文献   

3.
In stoichiometric amounts, the spin label N-tempoyl-(p-chloromercuribenzamide) reacts rapidly with one cysteine residue in membrane-bound bovine rhodopsin. This residue is distinct from the two reactive cysteines previously used as attachment sites for spectroscopic labels, and is on the external surface of the protein near the cytoplasmic membrane/aqueous interface. The spin-labeled side chain has revealed a light-induced conformational change in membrane-bound rhodopsin that is apparently not associated with protein aggregation. The changes are reversible upon the addition of 11-cis retinal, and the magnitude of the change is dependent on the identity of the phospholipid in the surrounding bilayer. Alteration of lipid composition has a much larger effect on bleached rhodopsin than rhodopsin itself, indicating that the former is more readily deformable in response to changes in bilayer properties. This is consistent with the loss of 11-cis retinal binding energy in opsin compared to rhodopsin. These results provide direct structural evidence that the conformation of a membrane protein can be modulated by the lipid properties.  相似文献   

4.
Abstract— The visual pigment rhodopsin is the major membrane protein in the rod photoreceptor membrane. Rhodopsin's function is to transduce the light induced isomerization (ll-cis to all-trans) of its internally located retinylidene chromophore into transient expression of signal sites at the surface of the protein. Fourier transform infrared (FTIR) difference spectroscopy has been used to study all of the steps in the photobleaching sequence of rhodopsin. Early protein alterations involving the peptide backbone and aspartic and/or glutamic carboxyl groups were detected which increase upon lumirhodopsin formation and spread to water exposed carboxyl groups by metarhodopsin II. The intensified and frequency shifted hydrogen-out-of-plane vibrations of the chromophore that are present in bathorhodopsin are absent in lumirhodopsin. This indicates that by lumirhodopsin, the chromophore has relaxed relative to its more strained all-frans form in bathorhodopsin. Finally, the transition to metarhodopsin II is found to involve perturbation of the acyl tail region of unsaturated phospholipid molecules possibly in response to small changes in the shape of the rhodopsin.  相似文献   

5.
Abstract— We have, previously, described a light-induced near infrared (700–850 nm) light scattering transient obtained in the presence of ATP from bovine rod outer segments suspensions in which the plasma but not the disk membranes were perforated (Uhl et al ., 1979a). This transient was termed the 'A' signal. To elucidate its possible origin, we have analyzed their angular and wavelength dependencies. These data have been compared with osmotically controlled (non-light) induced light scattering changes from identical control rod outer segments suspensions. It has been found that AD (the dark light scattering signal obtained in the presence of ATP) and ALS (the slow component of the actinic flash induced light scattering signal, AL) can be assigned to the swelling of the disk membranes while ALf (the fast component of this latter signal) can be attributed to the change in refractive index of the ROS caused by the hypsochromic spectral shift of photolyzed rhodopsin. The collective disk swelling associated with A, and ALS is consistent with the pumping of ions into the disk lumen by the action of a disk membrane bound ATPase.  相似文献   

6.
Absorbance difference spectra were recorded from 10 micros to 540 ms after photoexcitation of sonicated suspensions of hypotonically washed bovine rod outer segments with varying amounts of the detergent digitonin added (0 to 2%) at 20 degrees C. Metarhodopsin I480 and metarhodopsin II displayed the expected anomalous pH dependence at pH 6 and 8 (i.e. opposite to that expected from direct protonation of the chromophore Schiff base). However, increasing levels of digitonin eliminated the pH dependence of the equilibrium, and at 2% digitonin the pH 6 and pH 8 data were both similar to the data collected at pH 8 without digitonin. Addition of 0.5% azolectin restored approximately 50% of the anomalous pH dependence at pH 6 in the 2% digitonin sample. The possibility that digitonin induced large-scale aggregation of rhodopsin in the disk membrane that could be reversed by azolectin was tested using time-resolved linear dichroism. Those results showed that even 0.3% digitonin disrupted the membrane, and no large aggregates were detectable under any conditions. Thus, digitonin reduces the activity of a component of the disk membrane required for metarhodopsin II formation, and that deficiency can be compensated for by azolectin.  相似文献   

7.
Abstract— The dark current of retinal rods is suppressed for an extended period when their rhodopsin is bleached. An 8% bleach completely suppresses the current for 8 min and after 35 min it is fully recovered. The dark current can recover fully from a bleaching flash without any rhodopsin being regenerated. Moreover the recovery can be hastened either by lowering the activity of calcium ions surrounding the rods or by regenerating the rhodopsin. The recovery of the dark current following these bleaches showed zero order kinetics, regardless of whether the recovery was hastened by low calcium, 11- cis retinaldehyde or not. If all the rhodopsin is bleached in the retina, the dark current does not recover; the addition of 11- cis retinaldehyde, but not all- trans retinaldehyde, to the bleached retina causes the dark current to begin its recovery as early as 10 min after the addition with zero order kinetics (1.3% min-1). In two of three similar experiments, the dark current recovered 100%. When the recovery rate of the dark current from the retina showing the earliest response is compared with the rate of the regeneration of rhodopsin in the plasma and disc membranes, the dark current begins its recovery after the plasma membrane rhodopsin is fully regenerated and the disc rhodopsin is half regenerated. When the disc rhodopsin is fully regenerated, the dark current is recovered 75%, and 20 min later it is completely recovered.  相似文献   

8.
Abstract—In the presence of Mg2+ and adenosine triphosphate (ATP), a rapid. light-induced, light-scattering transient is observed from bovine rod outer segments (ROS). This light-scattering transient we have labelled 'A'. Ca2+ cannot replace Mg2+. nor can guanosine triphosphate (GTP) replace ATP. 'A' is observed at ATP concentrations as low as a few μM.
The half-time of 'A', 60 ms at 20° and 20 ms at 37°, is consistent with a process possibly involved in visual transduction.
'A' has the action spectrum of rhodopsin bleaching and its amplitude is strictly proportional to the fraction of rhodopsin bleached per flash. 'A' can be regenerated by 11- cis retinal.
Inhibition studics with ATP analogues, which cannot be hydrolysed and fail to evoke an 'A' response, reveal that an ATP hydrolysis process has to precede illumination in order for 'A' to occur.
On the basis of the above findings. it is proposed that there is a Mg2+ dependent ATPase in ROS that allows the disk membrane to assume a new membrane state which, upon illumination, is altered. giving rise to the structural phenomenon monitored as light-scattering transient 'A'.  相似文献   

9.
Abstract—Light absorption by rhodopsin in receptor cell membranes initiates the excitation of the receptor cell. Rhodopsin-phospholipid membrane vesicles were studied to localize initial transduction events. Rhodopsin-phospholipid recombinant membranes are thermally stable and light sensitive and may be chemically regenerated after bleaching in the same manner as receptor cell membranes. Rhodopsin-containing vesicles prepared from unsaturated phosphatidylcholine (PCho) or PCho and phosphatidylethanolaminc display kinetics for the metarhodopsin I to II transition which are comparable to those of receptor cell membranes. NMR spectroscopy was used to examine the permeability of the membrane vesicles to added shift (Eu3+) or relaxation reagents (Mn2+, Co2+). Unexposed rhodopsin-phospholipid vesicles are sealed to ion movement and become permeable after light exposure. Selected ions (Ca2+, Mn2+, Co2+) may be photoreleased from the interior of loaded membrane vesicles. The quantity released is proportional to the initial ionic concentration. The number of ions released/rhodopsin bleached is dependent on the light intensity, and high yields (40–160) of Ca2+/rhodopsin bleached are observed at low levels of light bleaching. The present results indicate that rhodopsin spans the phospholipid bilayer membrane, and are consistent with an increase in the permeability of the membrane initiated by light excitation of rhodopsin.  相似文献   

10.
In this study, we have used liquid crystals (LCs) to investigate the mechanism and dynamics of structural change of phospholipid membranes caused by sodium deoxycholate (NaDC). Addition of the NaDC aqueous solution to the phospholipid [1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG)] modified aqueous/LC interface resulted in the interaction-induced change of the orientational arrangement of the LCs from a homeotropic state to a planar state. The importance of contributing parameters was determined by observing the changes in the orientation of LCs. We showed that this interaction was affected by reaction time, reaction pH, concentration of NaDC and the presence of cholesterol. Moreover, the phospholipid membrane, which became defective after being exposed to NaDC, was capable of self-repairing by excess Tris-buffered saline solution, indicating that the reaction of NaDC with the phospholipid membrane is reversible. The obtained results proved the feasibility of the method deploying the DOPG/LC interface to monitor the membrane reaction stemming from the interaction between a bioactive molecule and a phospholipid membrane.  相似文献   

11.
Abstract— A rapid change in an interfacial electric potential of isolated bovine rod outer-segment disc membranes occurs upon illumination. This potential change, which has been detected by the use of spin labelled hydrophobic ions, apparently occurs within a low dielectric boundary region of the membrane near the external (cytoplasmic) surface and is positive with respect to the aqueous exterior of the disk. The magnitude of the potential change is pH and temperature dependent and appears with a first-order half-time of approximately 5 ms at 23°C. A simple model in which one positive charge per bleached rhodopsin is translocated from the cytoplasmic aqueous space into the membrane low dielectric boundary region readily accounts for all experimental observations. The similarity of the boundary potential change to the R2 phase of the early receptor potential suggests that the two have the same molecular origin.  相似文献   

12.
Spin-exchange experiments are useful for improving the resolution and establishment of sequential assignments in solid-state NMR spectra of uniformly (15)N-labeled proteins oriented macroscopically in phospholipid bilayers. To exploit this advantage fully, it is crucial that the diagonal peaks in the two-dimensional exchange spectra are suppressed. This may be accomplished using the recent pure-exchange (PUREX) experiments, which, however, suffer from up to a threefold reduction of the cross-peak intensity relative to experiments without diagonal-peak suppression. This loss in sensitivity may severely hamper the applicability for the study of membrane proteins. In this paper, we present a two-dimensional exchange experiment (iPUREX) which improves the PUREX sensitivity by 50%. The performance of iPUREX is demonstrated experimentally by proton-mediated (15)N-(15)N spin-exchange experiments for a (15)N-labeled N-acetyl-L-valyl-L-leucine dipeptide. The relevance of exchange experiments with diagonal-peak suppression for large, uniformly (15)N-labeled membrane proteins in oriented phospholipid bilayers is demonstrated numerically for the G-protein coupled receptor rhodopsin.  相似文献   

13.
CIRCULAR DICHROISM OF BOVINE RHODOPSIN   总被引:2,自引:0,他引:2  
Abstract— When rhodopsin is associated with membrane particles, phospholipid may be involved in maintaining a preferred conformation of the opsin and the asymmetric structure of the chromophore of rhodopsin.  相似文献   

14.
Abstract—Rhodopsin in retinal rod outer segment disc membranes, was proteolyzed by treatment with papain. This treatment left three fragments of apparent mol wt of 26,000, 19,000 and 10,000 in the membrane. The circular dichroism (CD) of solubilized, proteolyzed rhodopsin, in both the UV and visible spectral regions, was essentially identical to that of native rhodopsin. This indicates that the retinal binding site configuration is essentially unchanged by proteolysis and that the proteolyzed form of rhodopsin retained the helical content of native rhodopsin. Far UV CD measurements on the fragments indicate that the secondary structural features of the proteolyzed complex were largely maintained when the complex was dissociated. This finding suggests that the proteolytic fragments represent independently stabilized domains within rhodopsin. Measurements of the dependence of the activation free energy of the unfolding of opsin (as determined by the rate of loss of regenerability of opsin) and the meta I to meta II transition on the level of phospholipid associated with opsin and rhodopsin. respectively, have allowed for a determination of the mode of stabilization of these proteins by phospholipid. This dependence has been shown to have a linear form for opsin and rhodopsin. Hence, it appears that the stabilization of the tertiary structure of both solubilized opsin and rhodopsin is attributable to the sum of their interactions with individual phospholipid molecules, interacting with the protein in a non-cooperative manner.  相似文献   

15.
In current shotgun‐proteomics‐based biological discovery, the identification of membrane proteins is a challenge. This is especially true for integral membrane proteins due to their highly hydrophobic nature and low abundance. Thus, much effort has been directed at sample preparation strategies such as use of detergents, chaotropes, and organic solvents. We previously described a sample preparation method for shotgun membrane proteomics, the sodium deoxycholate assisted method, which cleverly circumvents many of the challenges associated with traditional sample preparation methods. However, the method is associated with significant sample loss due to the slightly weaker extraction/solubilization ability of sodium deoxycholate when it is used at relatively low concentrations such as 1%. Hence, we present an enhanced sodium deoxycholate sample preparation strategy that first uses a high concentration of sodium deoxycholate (5%) to lyse membranes and extract/solubilize hydrophobic membrane proteins, and then dilutes the detergent to 1% for a more efficient digestion. We then applied the improved method to shotgun analysis of proteins from rat liver membrane enriched fraction. Compared with other representative sample preparation strategies including our previous sodium deoxycholate assisted method, the enhanced sodium deoxycholate method exhibited superior sensitivity, coverage, and reliability for the identification of membrane proteins particularly those with high hydrophobicity and/or multiple transmembrane domains.  相似文献   

16.
It has long been believed that bathorhodopsin is the first intermediate of visual process for cattle rhodopsin. In the present paper hypsorhodopsin is shown to be the first intermediate by the use of picosecond spectropic technique. The main first intermediate, hypsorhodopsin, is formed with the time constant of 15 ± 5 ps. The time constant of the formation of bathorhodopsin from hypsorhodopsin is 50 ± 20 ps. Bathorhodopsin intermediates formed directly from excited state rhodopsin and those formed indirectly through hypsorhodopsin are 71/2#% and 93%, respectively, of total bathorhodopsin intermediates in octylglucoside buffered solution. Batho intermediates formed directly and indirectly are 0% and 100%. respectively, of total batho intermediates in LDAO buffered solution.  相似文献   

17.
Galactose was specifically inserted into the carbohydrate moiety of rhodopsin by incubating retinal disk membranes with UDP-galactose: N-acetylglucosamine galactosyltransferase. The stoichiometry of labeling ranged from 1.2 to 1.8 (average = 1.5) residues of galactose per molecule of rhodopsin, indicating that some or all of the oligosaccharide chains of membrane-bound rhodopsin are readily accessible to enzymatic modification. These modified membranes were treated with galactose oxidase to generate an aldehyde at the C-6 position of the inserted galactose units. The enzymatically-oxidized membranes were then reacted with dansyl hydrazide to yield a fluorescent hydrazone which is sufficiently stable to permit spectroscopic analysis. This procedure for the specific attachment of a spectroscopic probe should be applicable to a wide variety of membrane glycoproteins.  相似文献   

18.
The stationary phases of octadecylsilica (ODS) coated with phospholipid have been developed as a model of artificial lipid membranes for liquid chromatographic columns. An ODS column coated with phospholipid can be readily prepared by recycling a solution containing L-alpha-dipalmitoyl-phosphatidylcholine (DPPC) through an ODS column in a closed loop. DPPC becomes absorbed on the ODS surfaces by hydrophobic interaction between the acyl group of DPPC and the octadecyl group of the ODS surfaces. The DPPC column was usable when a mobile phase containing 30% (v/v) acetonitrile was delivered without detachment of the DPPC from the ODS surfaces. The retention behavior of ionic solutes on the DPPC column suggested that the retention was based on both ionic and electrostatic interactions between the solutes and the stationary phase. The retention factors on the DPPC column correlated well with the partition coefficients in liposome systems for alpha-adrenoceptor agonists and beta-blockers, indicating that the partition of solutes between the coated phase and buffer was similar to that in the liposome/water system. The DPPC column can be used in screening studies to predict the binding properties of drugs onto lipid membranes.  相似文献   

19.
马丽娜  吴丹  边六交 《色谱》2012,30(8):822-826
Kringle 5是血纤维蛋白溶酶原中特异抑制内皮细胞增生和迁移活性最高的一种血管生成抑制剂。该实验在前期成功克隆和表达可溶性非融合血管生成抑制剂Kringle 5的基础上,建立了一种两步色谱法分离纯化Kringle 5的方法。首先用SP Sepharose Fast Flow强阳离子交换色谱柱对Kringle 5重组菌体破碎上清液进行初步分离,然后再用丙烯葡聚糖凝胶S-100 HR凝胶排阻色谱柱对其进行进一步的纯化。采用本方法得到的可溶性非融合血管生成抑制剂Kringle 5经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和高效凝胶排阻色谱检测其纯度大于98%,通过鸡胚尿囊膜法确定这种蛋白质具有抑制内皮毛细血管生长的活性。  相似文献   

20.
Abstract— Hypsorhodopsin and bathorhodopsin were formed in the frog retina by irradiating rhodopsin at liquid He temperature (9 K) with orange light (> 520 nm) and blue light (437 nm), respectively. Hypsorhodopsin was converted to bathorhodopsin in the retina by warming above 32 K in the dark. Similar phenomena were observed in the rod outer segment suspension. A difference spectrum between hypsorhodopsin and bathorhodopsin in the retina produced by warming was almost identical with that in the rod outer segment suspension. This suggests that the transition dipole moment of hypsorhodopsin is parallel to the disk membrane plane which is also parallel to that of bathorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号