首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

2.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

3.
Six polynuclear chlorobismuthates are formed in the reaction between BiCl3 and Ph4PCl by variation of the molar ratio of the educts, the solvents and the crystallisation methods: [Ph4P]3[Bi2Cl9] · 2 CH2Cl2, [Ph4P]3[Bi2Cl9] · CH3COCH3, [Ph4P]2[Bi2Cl8] · 2 CH3COCH3, [Ph4P]4[Bi4Cl16] · 3 CH3CN, [Ph4P]4[Bi6Cl22], and [Ph4P]4[Bi8Cl28]. We report the crystal structure of [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 which crystallises with triclinic symmetry in the S. G. P1 No. 2, with the lattice parameters a = 13.080(3) Å, b = 14.369(3) Å, c = 21.397(4) Å, α = 96.83(1)°, β = 95.96(1)°, γ = 95.94(2)°, V = 3943.9(1) Å3, Z = 2. The anion is formed from two face‐sharing BiCl6‐octahedra. [Ph4P]2[Bi2Cl8] · 2 CH3COCH3 crystallises with monoclinic symmetry in the S. G. P21/n, No. 14, with the lattice parameters a = 14.045(5) Å, b = 12.921(4) Å, c = 17.098(3) Å, β = 111.10(2)°, V = 2894.8(2) Å3, Z = 2. The anion is a bi‐octahedron of two square‐pyramids, joined by a common edge. The octahedral coordination is achieved with two acetone ligands. [Ph4P]4[Bi4Cl16] · 3 CH3CN crystallises in the triclinic S. G., P1, No. 2, with the lattice parameters a = 14.245(9) Å, b = 17.318(6) Å, c = 24.475(8) Å, α = 104.66(3)°, β = 95.93(3)°, γ = 106.90(4)°, V = 5486(4) Å3, Z = 2. Two Bi2Cl8 dimers in syn‐position form the cubic anion. Lattice parameters of [Ph4P]3[Bi2Cl9] · CH3COCH3 are also given. The solvated compounds are desolvated at approximately 100 °C. [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 and [Ph4P]3[Bi2Cl9] · CH3COCH3 show the same sequence of phase transitions after desolvation. All compounds melt into a liquid in which some order is observed and transform on cooling into the glassy state.  相似文献   

4.
Crystal Structures of [Et3PNAsPh3]2[Ag2Br4] and [Et3PNAsPh3]2[Pd2Br6] Colourless single crystals of [Et3PNAsPh3]2[Ag2Br4]( 1 ) and red single crystals of [Et3PNAsPh3]2[Pd2Br6]( 2 ) have been isolated from saturated solutions in acetonitrile of equivalent mixtures of [Et3PNAsPh3]Br with AgBr and PdBr2, respectively. Both complexes were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at ‐70°C: a = 985.0(2), b = 1042.2(5), c = 1345.8(5) pm, α = 102.88(2)°, β = 105.73(2)°, γ = 94.94(2)°, R1 = 0.0577. 2 : Space group P21/c, Z = 2, lattice dimension at ‐70°C: a = 1003.0(1), b = 1371.8(2), c = 1974.0(1) pm, β = 93.30(1)°, R1 = 0.0458. The dimeric anions of 1 and 2 form planar, centrosymmetric complex units.  相似文献   

5.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

6.
Crystal Structures of (Ph4P)2[HfCl6]·2CH2Cl2 and (Ph4P)2[Hf2Cl10]·CH2Cl2 Colourless single crystals of (Ph4P)2[HfCl6]·2CH2Cl2 ( 1 ) and (Ph4P)2[Hf2Cl10]·CH2Cl2 ( 2 ) were obtained from hafniumtetrachloride and tetraphenylphosphonium chloride in dichloromethane solution, using the corresponding stoichiometry of the educts. Both compounds were characterized by X‐ray structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1018.3(1), b = 1121.0(1), c = 1240.1(1) pm, α = 70.55(1)°, β = 81.38(1)°, γ = 80.02(1)°, R1 = 0.0374. 2 : Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1124.4(1), b = 1141.9(1), c = 1281.4(1) pm, α = 63.80(1)°, β = 68.15(1)°, γ = 86.33(1)°, R1 = 0.0208.  相似文献   

7.
Crystal structures of (Et4N)2[Mo3S7Br6] (I) and (Et4N)(H9O4)[Mo3S7Cl6] (II) clusters belonging to the class of Mo3S 7 4+ were determined by X-ray diffraction analysis. Crystals I are orthorhombic a=19.106(3), b=12.930(2), c=29.887(5) Å, V=7383(2) Å3, space group Pbca, Z=8, dcalc=2.253 g/cm3, R(F)=0.0402, wR(F2)=0.0587 for 2493 Fhkl>4σ. Crystals II are monoclinic, a=17.106(3), b=18.882(4), c=11.006(2), Å, β=126.13(3)°, V=2871.2(9) Å3, space group Cc, Z=4, dcalc=2.147 g/cm3, R(F)=0.0181, wR(F2)=0.0445 for 2307 Fhkl>4σ. Structure I has an anion dimer with 3Sax…Cl=3.258(4)–3.404(4) Å; the dimer is similar to that observed in the structures of A2[M3X7Hal6], A=Ph4P+, Ph3EtP+, and PPN+. In structure II, infinite chains of anions bonded by 3Sax…Cl contacts of 3.183(3)–3.394(3) Å were found. A similar phenomenon was established earlier for the structure of (Et4N)(H9O4)[Mo3S7Br6] (III), which is not isostructural to II. Compounds II and III also differ in the structure of the H9O4 + cation: infinite helix in II and pyramid in III.  相似文献   

8.
Reactions of Uranium Pentabromide. Crystal Structures of PPh4[UBr6], PPh4[UBr6] · 2CCl4, (PPh4)2[UBr6] · 4CH3CN, and (PPh4)2[UO2Br4] · 2CH2Cl2 PPh4[UBr6] and PPh4[UBr6] · 2CCl4 were obtained from UBr5 · CH3CN and tetraphenylphosphonium bromide in dichloromethane, the latter being precipitated by CCl4. Their crystal structures were determined by X-ray diffraction. PPh4[UBr6]: 2101 observed reflexions, R = 0.090, space group C2/c, Z = 4, a = 2315.5, b = 695.0, c = 1805.2 pm, β = 96.38°. PPh4[UBr6] · 2CCl4: 2973 reflexions, R = 0.074, space group P21/c, Z = 4, a = 1111.5, b = 2114.2, c = 1718.7 pm, β = 95.42°. Hydrogen sulfide reduces uranium pentabromide to uranium tetrabromide. Upon evaporation, bromide is evolved from solutions of UBr5 with 1 or more then 3 mol equivalents of acetonitrile in dichlormethane yielding UBr4 · CH3CN and UBr4 · 3CH3CN, respectively. These react with PPh4Br in acetonitrile affording (PPh4)2[UBr6] · 4CH3CN, the crystal structure of which was determined: 2663 reflexions, R = 0.050, space group P21/c, Z = 2, a = 981.8, b = 2010.1, c = 1549.3 pm, β = 98.79°. By reduction of uranium pentabromide with tetraethylammonium hydrogen sulfide in dichloromethane (NEt4)2[U2Br10] was obtained; (PPh4)2[U2Br10] formed from UBr4 and PPh4Br in CH2Cl2. Both compounds are extremely sensitive towards moisture and oxygen. The crystal structure of the oxydation product of the latter compound, (PPh4)2[U02Br4]· 2 CH2Cl2, was determined: 2163 reflexions, R = 0.083, space group C2/c, Z = 4, a = 2006.3, b = 1320.6, c = 2042,5 pm, β = 98.78°. Mean values for the UBr bond lengths in the octahedral anions are 266.2 pm for UBr6-, 276.7 pm for UBr62? and 282.5 pm for UO2Br42?  相似文献   

9.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

10.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

11.
Crystal Structures, Vibrational Spectra and Normal Coordinate Analysis of fac ‐(Et4N)[OsF3Cl3] and fac ‐(Et4N)[IrF3Cl3] By careful oxidation of the pure fluorochloroosmates(IV) or ‐iridates(IV) with BrF3 or KBrF4 in dichloromethane the mixed pentavalent complex anions fac‐[OsF3Cl3] and fac‐[IrF3Cl3] are formed. X‐ray structure determinations on single crystals have been performed of cis‐(Et4N)[OsF3Cl3] ( 1 ) (orthorhombic, space group Pbca, a = 11.225(5), b = 12.020(5), c = 21.873(5) Å, Z = 8) and fac‐(Et4N)[IrF3Cl3] ( 2 ) (orthorhombic, space group Pbca, a = 11.269(10) b = 12.049(1), c = 21.801(3) Å, Z = 8). Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra for the anion of 1 and 2 have been assigned by normal coordinate analysis. The Osmium compound exhibits slightly higher valence force constants as compared with the Iridium complex: fd(OsF) = 3.25, fd(IrF) = 3.25, fd(OsCl) = 2.35 and fd(IrCl) = 2.25 mdyn/Å.  相似文献   

12.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

13.
Formation of PPh4[WOCl4 · THF] and PPh4Cl · 4As4S3 from W(CO)6 and PPh4[As2SCl5] and their Crystal Structures When W(CO)6 and PPh4[As2SCl5] are irradiated with UV light in tetrahydrofurane, PPh4[WOCl4 · THF], PPh4 Cl· 4As4S3 and PPh4[Cl2H] are obtained. X-ray crystal structure determinations were performed. PPh4[WOCl4 · THF], monoclinic, space group P21/c, Z = 4, a = 1207.5(2), b = 1003.7(2), c = 2642.0(5) pm, β = 114.71(1)°, R = 0.049% for 2824 reflexions; PPh4+ and [WOCl4. THF]? ions are present, the WOCl4 group having the shape of a tetragonal Pyramid with a short W ? O bond (169 pm) and the THF molecule being weakly associated (W? O 236 pm). PPh4Cl · 4AsS3, tetragonal, I41/a, Z = 4, a = 1742.3(3), c = 1664.5(4) pm, R = 0.066% for 1350 reflexions; it consists of separate PPh4+ and Cl? ions and As4S3 molecules.  相似文献   

14.
Thiohalo Compounds of Niobium and Tantalum: NbSCl3, TaSCl3, [NbSCl5]2?, [TaSCl5]2?, [NbSBr4]?. Crystal Structures of (PPh4)2[NbSCl5] · 2 CH2Cl2 and NEt4[NbCl6] NbSCl3 can be obtained from NbCl5 by reaction with H2S or bistrimethylsilyl sulfide in a suspension of CCl4 or CH2Cl2, respectively; in the latter case the product contains a rest of trimethylsilyl groups. This also applies for TaSCl3, NbSBr3 and TaSBr3, which are formed from the metal pentahalides and S(SiMe3)2. NEt4[NbSCl4] is formed together with NEt4[NbCl6] in the reaction of NbCl5 with NEt4SH in CH2Cl2. PPh4[NbCl6] reacts with S(SiMe3)2 in dichloromethane yielding (PPh4)2[NbSCl5] · 2 CH2Cl2, whereas PPh4[NbSBr4] is obtained from PPh4[NbBr6] and S(SiMe3) under the same conditions. (PPh4)2[TaSCl5] · 2 CH2Cl2 was obtained from TaSCl3 and PPh4Cl in CH2Cl2. According to an X-ray crystal structure determination (PPh4)2[NbSCl5] · 2 CH2Cl2 crystallizes in the β-(AsPh4)2[UCl6] · 2 CH2Cl2 type with positionally disordered, octahedral anions. Crystal data: a = 1 021.7, b = 1120.4, c = 1 243.3 pm, α = 70.77, β = 80.24, γ = 80.54°, space group P1 , Z = 2; 2462 unique observed reflexions, R = 0.036. NEt4[NbCl6] crystallizes isotypic to NEt4[WCl6], a = 723.5, b = 1 018.0, c = 1 174.6 pm, β = 100.07°, space group P21/n, Z = 2; 1 875 reflexions, R = 0.075.  相似文献   

15.
[Au(Et2dtc)2][TcNCl4] – Synthesis and Structure [Au(Et2dtc)2][TcNCl4] (Et2dtc = N,N‐diethyldithiocarbamate) is formed by the reaction of [Au(CO)Cl] with [TcN(Et2dtc)2] in dichloromethane. The solid state structure of the compound is characterized by a large triclinic unit cell (space group, P1, a = 9.422(2), b = 22.594(5), c = 32.153(7) Å, α = 72.64(1), β = 85.19(1), γ = 86.15(1)°, Z = 12) and shows an unusual arrangement due to long‐range contacts between the technetium atoms and sulfur atoms of the [Au(Et2dtc)2]+ units (3.45–3.56 Å) which assemble two anions and one cation to {[TcNCl4][Au(Et2dtc)2] · [TcNCl4]} moieties.  相似文献   

16.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

17.
New Oxonium Bromochalcogenates(IV) — Synthesis, Structure, and Properties of [H3O][TeBr5] · 3 C4H8O2 and [H3O]2[SeBr6] Dark red crystals of the composition [H3O][TeBr5] · 3 C4H8O2 ( 1 ) were isolated from a saturated solution of TeBr4 in 1,4-dioxane containing a small amount of water. In this compound (space group P21/m, a = 8.922(4) Å, b = 13.204(7) Å, c = 9.853(5) Å, β = 91.82(4)° at 150 K) a square pyramidal [TeBr5]? anion has been isolated for the first time. The coordination sphere of the anion is completed to a distorted octahedron by weak interaction with a dioxane molecule of the cationic system. The [H3O]+ cations are connected to chains by dioxane molecules. At room temperature the compound is stable only in its mother liquor. Crystalline [H3O]2[SeBr6] ( 2 ) (space group Fm3m, a = 10.421(1) Å at 170 K) is a bromoselenous acid of high symmetry. The [H3O]+ ion is only weakly coordinated by Br atoms of the anion. The anions are isolated octahedral [SeBr6]2? units. The structure is isotypic to the K2[PtCl6] structure. Despite being a halogenochalcogen(IV) acid, 2 exhibits a remarkable thermal stability. Both oxonium compounds were characterized by single-crystal X-ray structure analyses. Vibrational spectra of 2 are reported.  相似文献   

18.
Inhaltsübersicht. Die beiden silicathaltigen Blei(II)-oxidhalogenide Pb4[SiO4]Cl4 und Pb4[SiO4]Br4 wurden erstmals dargestellt und ihre Kristallstruktur an Einkristallen mit Röntgen-beugungsmethoden ermittelt. Die Verbindungen kristallisieren in der monoklinen Raumgruppe P21/c (No. 14) mit den Gitterparametern: Pb4[SiO4]Cl4: A = 8,73(1) Å, b = 15,68(1) Å, c = 8,265(6) Å, β = 92,4(1)°, Z = 4 Pb4[SiO4]Br4: A = 9,00(1) Å, b = 16,217(8) Å, c = 8,404(4) Å, β = 92,4(1)°, Z = 4 Im Gegensatz zu der “nichtstöchiometrischen” Verbindungsgruppe um Pb8O7Br2 · SiO2 konnten hier alle Atomlagen ermittelt werden. Es liegen einzelne SiO4-Gruppen vor, die über Pb2+ zu leicht gewellten Netzen verbunden sind. Zwischenräume und Löcher der Netze werden von Halogenidionen aufgefüllt. Preparation and Crystal Structures of the First Two Members of a New Type of Lead (II) Oxyhalides, Pb4[SiO4]X4 (X = Cl, Br) Both silicate-bearing lead(II) oxyhalides Pb4[SiO4]Cl4 and Pb4[SiO4]Br4 were prepared and studied for their crystal structure with X-ray single crystal methods for the first time. The compounds crystallize in the monoclinic space group P21/c (No. 14) with following lattice parameters: Pb4[SiO4]Cl4: A = 8.73(1) Å, b = 15.68(1) Å, c = 8.205(6) Å, β = 92.4(1)°, Z = 4 Pb4[SiO4]Br4: A = 9.00(1) Å, b = 16.217(8) Å, c = 8.404(4) Å, β = 92.4(1)°, Z = 4. In contrast with further works about the group of nonstoichiometric lead oxyhalides Pb8O7Br2 · SiO2 in the present work all atomic positions were determined. The crystal structure shows single SiO4 groups linked only by Pb2+ ions to form slightly undulated nets. Holes and interspaces of these nets are stuffed with halide ions.  相似文献   

19.
Thiochloroarsenates (III): Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SCl5] and (PPh4)2[As2SCl6] · C2H4Cl2 PPh4[As2SCl5] can be obtained from As2S3 + PPh4Cl with HCl in CH2Cl2 or 1,2-C2H4Cl2. It reacts with a second mole of PPh4Cl to yield (PPh4)2[As2SCl6]. The latter also is formed by the reaction of As2S5 + 2 PPh4Cl with HCl, a second product being (PPh4)2[As2Cl8]. The i.r. and Raman spectra of the title compounds are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SCl5], monoclinic, space group P21/n, a = 1175.8, b = 1508.0, c = 1593.4 pm, β = 96.22°, Z = 4; (PPh4)2[As2SCl6] · C2H4Cl2, triclinic, P1, a = 1166.3, b = 1188.2, c = 2044.6 pm, α = 95.47, β = 97.53, γ = 111.05°, Z = 2. Including the lone electron pairs, the coordination of the As atoms in the [As2SCl5]? ion is distorted trigonal-bipyramidal with the S, one Cl atom, and an electron pair in equatorial positions; the two bipyramids around the two As atoms share a common edge. The As atoms in the [As2SCl6]2? ion have a distorted octahedral coordination, the two octahedra share a common face; the lone electron pairs are in the trans positions to the S atom.  相似文献   

20.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of cis -(Et4N)[OsF2Cl4] and trans -(Ph4P)[OsF2Cl4] By oxidation of the pure fluorochloroosmates(IV) with KBrF4 or PbO2/trifluoracetic acid in dichloromethane the mixed pentavalent complex anions cis-[OsF2Cl4] and trans-[OsF2Cl4] are formed. X-ray structure determinations on single crystals have been performed of cis-(Et4N) · [OsF2Cl4] ( 1 ) (monoclinic, space group P21/n, a = 7.519(2), b = 17.648(2), c = 11.942(4) Å, β = 105.98(2)°, Z = 4) and trans-(Ph4P)[OsF2Cl4] ( 2 ) (tetragonal, space group P4/n, a = 12.677(2), c = 7.743(1) Å, Z = 2). Based on the molecular parameters of the X-ray determinations and assuming C2v point symmetry for the anion of 1 and D4h point symmetry for the anion of 2 the IR and Raman spectra have been assigned by normal coordinate analysis. Due to the stronger trans influence of chlorine as compared with fluorine for F · –Os–Cl′ axes significally different valence force constants are observed in comparison with symmetrically coordinated axes: fd(OsF · ) = 3.35, fd(OsF) = 3.73, fd(OsCl′) = 2.05 and fd(OsCl) with 1.98 and 2.00 mdyn/Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号