首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The First Oxogermanate with “Stuffed Pyrgoms”: CsNa3Li8{Li[GeO4]}4 By heating the binary oxides CsO0.52, NaO0.45, LiO0.5 and GeO2 in the mol. ratio 1.24:1.4:6.7:3.9 (Ni tubes; 600°C/89 resp. 65 d) we obtained for the first time CsNa3Li8{Li[GeO4]}4 in form of pale yellow prisms as well as powder: space group I4/m (I. T. No. 87) with a = 1 120.73(5); c = 651.64(5) pm; Z = 2; (four circle diffractometer data; MoKα; 5 152 Io(hkl); R = 1.7%; Rw = 1.6%), parameters see text. The structure determination confirmes its being isotypic with CsKNaLi9{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4 and RbNa3Li8{Li[SiO4]}4. The Madelung part of lattice energy (MAPLE), effective coordination numbers (ECoN), mean fictive ionic radii (MEFIR) and the charge distribution (CHARDI) are calculated.  相似文献   

2.
The First Titanate with ?Stuffed Pyrgoms”?: RbNa3Li12[TiO4]4 = RbNa3Li8{Li[TiO4]}4 By heating a well grounded mixture of the binary oxides Rb2O, Na2O, Li2O, and TiO2 [Rb:Na:Li:Ti = 1.1:3.1:12.5:4.0; 780°C, 41 d] we obtained RbNa3Li8{Li[TiO4]}4 as colourless platelike crystals. This first titanate with ?stuffed pyrgoms”? is isostructural with RbNa3Li8{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4 and CsKNaLi9{Li[SiO4]}4 [2]. The compound crystallizes tetragonal I4/m with a = 1 125.8(1) pm and c = 652.4(1) pm (Guinier-Simon-Data, Z = 2). The structure was determined by four-cyrcle-data (Siemens AED2, MoK) and leds to the residual values R = 3.7% and Rw = 3.1% (additional data see text). The Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), Mean Fictive Ionic Raddii (MEFIR) and the Charge Distribution in Solids (CHARDI) are calculated and discussed.  相似文献   

3.
The First “Litho-Manganate(V)” with Layer-Structure: Cs2{Li[MnO4]} By heating intimate mixtures of the oxides [CsO1,2, Li2MnO3; Cs: Mn = 2,3 : 1; Ag-Zylinder, 580°C, 62 d] blue-green single crystals of Cs2{Li[VO4]} were obtained for the first time. The new “Litho-Manganate(V)” crystallices orthorhombic (SG: Cmc21) with a = 596.08(7), b = 1202.6(1), c = 816.8(1) pm (Guinier-Simon data), Z = 4. It is isotypic with Cs2{Li[VO4]} [1]. The structure was determined by four-circle-diffractometer data [Mo? Kα , for 496Io(hkl) R = 3.1%, R, = 2.4%], parameters see text. The Madelung Part of Lattice Energie, MAPLE and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, are calculated and disscussed.  相似文献   

4.
Chains consisting of Rings: K5{Li[Ge2O7]} — the First ‘Litho-Digermanate’ By heating of a well-ground mixture of the binary oxides KO0.55, Li2O and GeO2 (K: Li: Ge = 6.1 : 2.2 : 2; Ni-tube; 600°C; 49 d) we obtained for the first time single crystals of K5{Li[Ge2O7]}. This ‘lithodigermanate’ represents a completely new type of structure: monoclinic, space group P21/c, a = 624.9(2) pm, b = 1586.6(8) pm; c = 1058.3(6) pm and β = 109.38(4)°; Guinier-Simon data, Z = 4. The structure was solved by four-circle diffractometer data [Siemens AED II, Mo? Kα ; 2872 Io(hkl); R = 4.5%, Rw = 3.3%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, as well as charge distribution CHARDI, are calculated and discussed.  相似文献   

5.
A “Lithosilicate” with Columnar Units: RbLi5{Li[SiO4]}2 In order to prepare RbLi3[SiO4] single crystals of RbLi5{Li[SiO4]}2 have been obtained for the first time by heating of a well ground mixture of the binary oxides RbO0.68, LiO0.5 and SiO2 [Rb:Li:Si = 1.1:3.0:1.0; 600°C; 21 d] in tightly closed Ni tubes. The new “lithosilicate” crystallizes monoclinic (space group C2/m with a = 1563.1(2) pm, b = 635.4(1) pm, c = 776.3(1) pm, β = 90.53(1)°, Guinier-Simon powder data). The crystal structure was determined by four-cycle diffractometer data [Philips PW 1100, 1237 from 1609 Io(hkl), Z = 4, R = 9.2%, Rw = 8.3%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

6.
An Oxomanganate(V) of New Type: K11{Li[OMnO3]}4 By heating of well ground mixtures of the oxides [K2O2, LiMnO4, K:Mn = 2.2:1, Ag-tube, 580°C, 30 d] blue-green tetragonal single crystals of K11{Li[OMnO3]4} have been prepared for the first time: space group I4 2m; a = 787,18(7) pm, c = 1750.9(3) pm. The structure was determined by four-circle-diffractometer data [MoKα , 1236 from 1303 Io(h kl), R = 3.9%, Rw = 3.1%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and the Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

7.
Li10Si2PbIIO10 = Li20[(SiO4)4(OPbO2PbO)] — The first ?mixed”? Silicate-Plumbate(II) Colourless crystals of Li10Si2PbO10 were obtained by heating a well-ground mixture of LiPb, Li2O2 and ?SiO2”? (deriving from Duran glas) in Ag-tubes (650°C; 60 d). The crystal structure was determined (four-circle diffractometer data, Mo? K, 1 474 Io(hkl), R = 4.2%, Rw = 2.8%, parameters see text). The silicate-plumbate crystallizes monoclinic (space group C2/m; I. T. No. 12) with a = 2985.1(4); b = 610.6(6); c = 512.8(1) pm, β = 99.70(9)° (four-circle data), Z = 4. Further the Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), the Mean Fictive Ionic Radii (MEFIR) and the Charge Distribution (CHARDI) are being calculated.  相似文献   

8.
A New Oxogermanate: Li8GeO6 ? Li8O[GeO4] Transparent colourless single crystals of Li8GeO6(P63cm, a = 550.09(8), c = 1072.2(3) pm, Z = 2; 4-circle-diffractometer Siemens AED 2, MoKα; 326 Io(hkl), R = 2.4%, Rw = 2.0%), have been prepared. As by-product we always got colourless isometric single crystals of Li4GeO4. For the first time we could grow single crystals of Li8SiO6 of suitable size and quality. Our structure refinement confirms the assumed structure model [2]: Li8GeO6 and Li8SiO6 are isotypic with Li8CoO6[3] (Li8SiO6: a = 542.43(8), c = 1062.6(2) pm, Z = 2; 4-circle-diffractometer Siemens AED 2, MoKα; 306 Io(hkl), R = 3.6%, Rw= 3.0%). The known crystal structure of Li4GeO4 [4] is confirmed and refined (Cmcm, a = 776.6(2), b = 735.7(3), c = 604.9(2) pm, Z = 4; 4-circle-diffractometer Siemens AED 2, MoKα, 298 Io(hkl), R = 1.9%, Rw = 1.4%). The Madelung Part of Lattice Energy, MAPLE, and Effective coordination-Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated.  相似文献   

9.
About Cs2Li2[GeO4] By heating of a well-ground mixture of the binary oxides CsO0.55, Li2O and GeO2 (Cs:Li:Ge=2,6:2,2:1; Ni-tube; 600 °C; 49d) we got single crystals of Cs2Li2[GeO4] for the first time. Cs2Li2[GeO4] is isotypic to Rb2Li2[MO4] [M = Si, Ti, Ge] [2] and Cs2Li2[MO4] (M = Si, Ti) [3]: according to this Cs2Li2[GeO4] crystallizes triclinic, in the spacegroup P1 with a = 968.7(4) pm, b = 586.0(2) pm, c = 571.4(2) pm, α = 92.71(4)°, β = 110.95(3)° and γ = 94.34(4)° (Guinier-Simon data), Z = 2. The structure was determined by four-circle diffractometer data (Ag? Kα ; 2381 Io(hkl); R = 8,4%; Rw = 5.0%), parameters see text. Further the Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN) and the Mean Fictive Ionic Radii (MEFIR), have been calculated.  相似文献   

10.
Two New Silicate-Chlorides with Divalent Europium: LiEu3[SiO4]Cl3 and Li7Eu8[SiO4]4Cl7 LiEu3[SiO4]Cl3 was prepared by reaction of LiCl with Eu2SiO4 and Li7Eu8[SiO4]4Cl7 from Li with Eu2O3, SiO2 and LiCl. The crystal structures of LiEu3[SiO4]Cl3 (Pmna, a = 946.95(13); b = 699.52(8); c = 1 368.0(2) pm; Z = 4; R1 = 0.0325, R2w = 0.0642) and Li7Eu8[SiO4]4Cl7 (P21/c; a = 851.85(5); b = 948.62(7); c = 1 679.0(2) pm; β = 96.221(8)°; Z = 2; R1 = 0.0352, R2w = 0.0744) were determined from four-circle diffractometer data. LiEu3[SiO4]Cl3 contains [Li(SiO4)2] units and LiCl6 octahedra while in Li7Eu8[SiO4]4Cl7 larger ?lithosilicate”? groups are found. In both structures, the Eu2+ ions are coordinated mostly eightfold by O2? and Cl? ligands.  相似文献   

11.
The First ?Lithovanadate”?: K2{LiVO4} By heating of well ground mixtures of the binary oxides [K2O, Li2O, V2O5, K:Li: V = 2.2:1.1:1.0; Ni-tube, 900°C, 46 d] colourless monoclinic single crystals of K2[LiVO4] have been prepared for the first time: space group C2/m; a = 835.7(1) pm, b = 774.5(1) pm, c = 753,3(1) pm, β = 90.23(1)°. The structure was determined by four-circle diffractometer data [MoKα, 1018 form 1262 I0 (hkl), R = 8.65%, Rw = 5.67%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

12.
Two Types (A and B) of Pr2Te[SiO4] Two forms of praseodymium(III) telluride ortho-silicate (Pr2Te[SiO4]) are obtained as light green, transparent single crystals (A type: bricks, B type: needles, both unsensitive to hydrolysis) from a CsCl melt by reacting Pr, TeO2 and SiO2 in stoichiometric ratios (950 °C, 10 d) in evacuated silica tubes. A-Pr2Te[SiO4] crystallizes orthorhombically (Pbcm; a = 633.70(3), b = 724.42(4), c = 1125.13(8) pm; Z = 4) with alternatingly arranged monolayers {(Pr2)Te}+ and {(Pr1)[SiO4]} parallel (001). Pr1 exhibits a coordination number of nine (6 O and 3 Te) while Pr2 has ten next neighbours (6 O and 4 Te), in which all the oxygen atoms are components of discrete ortho-silicate tetrahedra ([SiO4]4–), as also is the case in the B-type structure. The telluride anions show coordination numbers of seven (3 Pr1 and 4 Pr2). B-Pr2Te[SiO4] crystallizes monoclinically (P21/c; a = 989.90(7), b = 648.03(4), c = 870.68(6) pm, β = 94.307(8)°; Z = 4) with along [100] alternatingly sheethed double layers [{(Pr1)Te}2]2+ and [{(Pr2)[SiO4]}2]2–. This results in coordination numbers of eight (4 O and 4 Te) for Pr1, nine plus one (8 O and 1 + 1 Te) for Pr2, and five plus one (4 Pr1 and 1 + 1 Pr2) for Te. The almost 8% higher density of Pr2Te[SiO4] in the A-type structure (Dx = 6.45 g/cm3) compared to that of B-type Pr2Te[SiO4] (Dx = 5.98 g/cm3) is quite remarkable.  相似文献   

13.
Oxidation of Intermetallic Phases: K4{Na2[Tl2O6]} from NaTl and K2O2 The hitherto unknown K4{Na2[Tl2O6]} was prepared in form of transparent, yellow single crystals from NaTl and KO1,08 (molar ratio 1:1.3; sealed Ag-cylinder; 450°C, 30 d). The structure determination (four-circle diffractometer, MoKα, 1 280 out of 1 523 Io(hkl), R = 5.75%, Rw = 4.58%) confirms the space group P21/c with a = 641.3 pm, b = 691.1 pm, c = 1188.5 pm, β = 95.69° and Z = 2. As characteristic building units of the structure there are doubles of tetrahedra of [Tl2O6] and [Na2O6]. The compound is isotypic with Cs6[In2O6] and Rb6[Tl2O6]. The Madelung Part of Lattice Energy, MAPLE, the Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and Charge Distribution, CHARDI, are calculated.  相似文献   

14.
New Alkalioxoarsenates (V). On Rb2Li[AsO4] and Cs2Li[AsO4] By heating of well-grounded mixtures of the binary oxides (A2O, Li2O2, and As2O3; A : Li : As = 2 : 1 : 1; Ni-tube, 550°C, 21 d; A = Rb, Cs) colourless single crystals of Rb2Li[AsO4] and Cs2Li[AsO4] were obtained for the first time. These new orthoarsenates(V) crystalize orthorhombic (space group C mc21? C, No. 36) with Z = 4. As expected they are isotypic with the according orthovanadates(V) [2] A2Li[VO4], A = Rb, Cs. The lattice constants of Rb2Li[AsO4]: a = 582.1(4) pm, b = 1171.1(7) pm, c = 792.4(5) pm and Cs2Li[AsO4]: a = 596.4(2) pm, b = 1223.4(2) pm, c = 819.7(3) pm were taken from Guinier-Simon powder data. The structure was determined by four-circle-diffractometer data [Siemens AED II, MoKα , 6290 I0 (hkl), R = 3.5%, Rw = 3.2% to Rb2Li[AsO4]; 3518 I0 (hkl), R = 2.8%, Rw = 2.6% to Cs2Li[AsO4]; parameters see text]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, as well as charge distribution CHARDI are calculated and discussed.  相似文献   

15.
Inhaltsübersicht. Erstmals wurden klar durchscheinende, orange-farbene Einkristalle von Cs2Li14[Tb3O14] aus Cs2TbO3 und Li2O (Tb: Li = 1:5) dargestellt [550°C, 21 d, verschlossenes AuRohr]. Es liegt der K2Li14[Pb3O14]-Typ vor [Vierkreisdiffraktometerdaten, PW 1100, MoKä-Strahlung, 660 Io(hkl), R = 4,8%, Rw = 3,4%, Immm, a = 1293,5(8), b = 792,6(3), c = 740,4(3) pm, Z = 2, d = 4,65]. Ebenfalls neu wurde K2Li14[Zr3O14] in Form farbloser Einkristalle durch Tempern inniger Gemenge von K2O, Li2O und ZrO2 (K: Li: Zr = 1:4:1,5) dargestellt [900°C, 14 d, geschlossene Ni-Bombe] und röntgenographisch untersucht. Die Strukturverfeinerung [612 Io(hkl), Vierkreisdiffraktometerdaten, PW 1100, MoKα-Strahlung, R = 5,9%, Rw = 5,3%, Immm, a = 1244,6, b = 776,4, c = 724,3 pm, Z = 2] bestätigt die Isotypie mit K2Li14[Pb3O14]. Der Madelunganteil der Gitterenergie, MAPLE, Effektive Koordinationszahlen, ECoN, diese über Mittlere Effektive Ionenradien, MEFIR, wurden berechnet. Für die nun bekannten Vertreter dieses Typs wurde ein Isotypievergleich vorgenommen. New Compounds of the K2Li14[Pb3O14] Type: Cs2Li14[Tb8O14] and K2Li14[Zr3O14] For the first time Cs2Li14[Tb3O14] has been prepared as orange single crystals from Cs2TbO3 and Li2O (Tb: Li = 1:5) [550°C, 21 d, sealed Au-Tube]. Structure Refinement [four-circle diffractometer data, PW 1100, MoKα radiation, 660 Io(hkl), R = 4.8%, Rw = 3.4%, Immm, a = 1293.5(8), b = 792.6(3), c = 740.4(3) pm, Z = 2, d = 4.65] confirms isotypy with K2Li14[Pb3O14]. K2Li14[Zr3O14] has also been prepared as colorless single crystals from K2O, Li2O, and ZrO2 (K: Li: Zr = 1:4:1.5), [900°C, 14 d, closed Ni-cylinder] and investigated by x-ray [612 Io(hkl), four-circle diffractometer data, PW 1100, MoKα radiation, R = 5.9%, Rw = 5.3%, Immm, a = 1244.6, b = 776.4, c = 724.3 pm, Z = 2]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Fictive Ionic Radii, MEFIR, are calculated. A detailed comparison of the structures is carried out.  相似文献   

16.
New Oxoferrates (III). Na2Li3[FeO4] and K2Li3[FeO4] . Na2Li3[FeO4] and K2Li3[FeO4] (transparent, pink or light yellow single crystals) have been prepared by heating mixtures of the oxides (Na:Li:Fe = 2.2:3.3:1; Ag-tube, 720°C, 27 d or K:Li:Fe = 2.2:3.3:1; analogous, 700°C, 40 d). Na2Li3[FeO4] is isotypic with Na2Li3[GaO4] (a = 832.2(1), b = 796.0(1), c = 656.3(1)pm, Pnnm) and K2Li3[FeO4] with K2Li3[GaO4] (a = 557.7(1), b = 880.6(1), c = 1101.8(2)pm, β = 111.51(2)°, P21/c). Four cycle diffractometer data: MoKα, 525 out of 686 I0(hkl), R = 9.36%, Rw = 5.97% or 1424 out of 1424 I0(hkl), R = 8.45%, Rw = 5.66%. Parameters see text. The structures are characterized by calculations of the Madelung Part of Lattice Energy, MAPLE. The Effective Coordination Numbers, ECoN, which are calculated by means of Mean Fictive Ionic Radii, MEFIR, are compared with the analogous gallates.  相似文献   

17.
The First Diniobate with ‘Isolated’ Anions: KLi4[NbO5]=K2Li8[Nb2O10] [1] . By heating of well ground mixtures of the binary oxides [K2O, Li2O, Nb2O5, K:Li:Nb=1.1:4.4:1, Pt-tube, 1100°C, 3d] colourless, triclinic single crystals of KLi4NbO5 have been prepared for the first time: space group P1 (Nr. 2) with a=816.9(2) pm, b=592.2(2) pm, c=589.7(2) pm, α=121.00(2)º, β=91.78(2)°, γ=99.23(2)°, Z=2. The crystal structure was solved by four-cycle diffractometer data [Mo-Kα , 1386 from 1386 Io(hkl), R=3.4%, Rw=2.6%], parameters see text. Characteristic for this structure are “isolated” groups of [Nb2O10] and the tetrahedral coordination of Li(1), Li(2), and Li(3). Li(4) has a tetragonal-pyramidal coordination. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, the Effective Coordination Numbers, ECoN and the charge distribution have been calculated and discussed.  相似文献   

18.
On the Oxidation of Intermetallic Phases: The Oxoplumbates(II) K6[Pb2O5] [1] and K4[PbO3] [2] Very pale yellow crystals of K6[Pb2O5] were obtained by heating a wellground mixture of LiPb und K2O2 (K2O2: LiPb = 2.5:1) in Ag-tubes (550°C; 40 d). The crystal structure, triclinic, space group P1 , a = 1 326.7(6); b = 758.8(4); c = 637.0(3) pm; α = 92.17(3)°; β = 94.41(3)°; γ = 112.85(4)°; Z = 2 was determined (four-circle diffractometer data, Mo? K, 3 270 Io(hkl), R = 8.0%, Rw = 3.5%, parameters see text). The pale yellow crystals of K4[PbO3] were received by heating KPb and K2O2 (K2O2: KPb = 3.3:2) in Ni-tubes (450°C; 17 d). The crystal structure (orthorhombic, space group Pbca with a = 658.2(1); b = 1 131.8(4); c = 1 872.2(6) pm; Z = 8) was refined (four-circle diffractometer data, Mo? K, 2 003 Io(hkl), R = 4.9%, Rw = 2.8%). The Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), the Mean Fictive Ionic Radii (MEFIR) and the Charge Distribution (CHARDI) are being calculated for both oxides.  相似文献   

19.
The First Quaternary Oxostannate with Isolated Anion Structure: RbNa3[SnO4] For the first time colourless single crystals of RbNa3SnO4 which are isotypic with NaLi3SiO4 and NaLi3GeO4 [2] have been prepared by heating e.g. a well ground mixture of RbSn and Na2O2 [Rb : Na = 1 : 4.0; 750°C; 21 d; Ni-tube]. The crystal structure was solved by four-cycle-diffractometer data [Siemens AED2; 1801 I0(hkl); space group I41/a; Z = 16; a = 1279.57, c = 1510.85 pm; R = 5.7%; Rw = 4.4%]. Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, are calculated. The isotypism of the compounds mentioned above is compared graphically.  相似文献   

20.
On the Existence of Polynary Oxides of the Alkali Metals with Monovalent Cobalt and Nickel For the first time we obtained RbNa2NiO2, KNa2NiO2, Na3CoO2 and K3CoO2 [RbNa2NiO2: Na2NiO2 + Rb2O, Rb:Ni = 1.8:1, 600°C, 28 d, Ni-tube; KNa2NiO2: Na2NiO2 + K2O, K:Ni = 1.8:1, 600°C, 20 d, Ni-tube; Na3CoO2: Na2O + CoO: Na:Co = 8.8:1, 500°C, 20 d, Co-tube; K3CoO2: K2O + CoO: K:Co = 4.4:1, 550°C, 20 d, Co-tube]. According to X-ray structure analysis of single crystals monovalent Co and Ni is present [always four-circle-diffractometer data, MoKα -radiation; RbNa2NiO2: AED 2, all 163 Io(hkl), R = 3.4%, Rw = 1.9%, I4/mmm, a = 461.7(1), c = 973.6(3) pm, Z = 2; KNa2NiO2: AED 2, all 341 Io(hkl), R = 5.6%, Rw = 3.5%, Cmma, a = 1 048.5(3), b = 626.8(1), c = 621.9(1) pm, Z = 4; Na3CoO2: PW 1 100, 517 of 568 Io(hkl), R = 2.9%, Rw = 1.8%, P42/mnm, a = 940.0, c = 464.5 pm, Z = 4; K3CoO2: PW 1 100, all 940 Io(hkl), R = 5.0%, Rw = 3.9%, Pnma, a = 1 190.0, b = 730.4, c = 604.1 pm, Z = 4]. All samples are red, the single crystals transparent. Two O2? coordinate Ni1+ and Co1+, respectively, like a dumb-bell. Mean Fictive Ionic Radii, MEFIR, and Effective Coordination Numbers, ECoN, and Madelung part of lattice energy, MAPLE, are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号