首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Unusual Coordination Polyhedra around Oxygen in Li4Cl(OH)3 The pseudobinary system LiOH/LiCl was investigated by X-ray methods. Two compounds, Li4Cl(OH)3 and Li2Cl(OH), were obtained. The crystal structure of Li4Cl(OH)3 solved by single-crystal methods is delt with. For Li2Cl(OH) powder diffraction data are given: Li4Cl(OH)3: P21/m, Z = 2, a = 5.4096(8) Å, b = 7.382(2) Å, c = 6.2076(8) Å, β = 94.40(1)°, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 483, Z (parameter) = 50, R/Rw = 0.022/0.025 Li2Cl(OH): Pmma, Z = 2, a = 7.680(8) Å, b = 4.001(7) Å, c = 3.899(6) Å The hydroxide rich compound crystallizes in a new type of structure which contains puckered layers [Li4(OH)3+] connected via chloride ions.  相似文献   

2.
Li2Br(NH2): The First Ternary Alkali Metal Amide Halide The pseudobinary system LiNH2/LiBr was investigated by X-ray methods. The crystal structure of the compound Li2Br(NH2) was solved by single crystal data: Li2Br(NH2): Pnma, Z = 8, a = 12.484(2) Å, b = 7.959(1) Å, c = 6.385(1) Å, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 348, Z (parameter) = 51, R/Rw = 0.019/0.021 Li2Br(NH2) crystallizes in a new type of structure. To one another isolated chains of [Li2Li4/2(NH2)22+] show the motif of closest rod packing. They are connected via bromide ions in a distorted cubic primitive arrangement.  相似文献   

3.
Rb2I(OH): A Hydroxide Iodide in the System RbOH/RbI The pseudobinary system RbOH/RbI was investigated by X-ray methods. The crystal structure of Rb2I(OH) was solved by single crystal data: Rb2I(OH): Pnma, Z = 4, a = 7.748(1) Å, b = 5.654(2) Å,c = 13.254(2) Å Z(Fo) with (Fo)2 ? 3σ = (Fo)2 = 449, Z (parameter) = 25, R/Rw = 0.021/0.023 Rb2I(OH) crystallizes in a new type of structure, built up by a three dimensional network of [Rb2(OH)+] containing the iodide ions.  相似文献   

4.
K2Br(OH) and Rb2Br(OH): Two New Ternary Alkali Metal Halide Hydroxides with a Pronounced Structural Relationship to KOH resp. RbOH Two isotypic compounds K2Br(OH) and Rb2Br(OH) were prepared in the systems KOH/KBr and RbOH/RbBr. Their structures were determined by single crystal X-ray methods: K2Br(OH): P21/m, Z = 2, a = 6.724(1) Å, b = 4.272(4) Å, c = 8.442(2) Å, β = 108.14(2)°, Z(Fo) = 651 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.041/0.047 Rb2Br(OH): P21/m, Z = 2, a = 6.918(3) Å, b = 4.483(2) Å, c = 8.850(5) Å, β = 108.08(6)°, Z(Fo) = 326 mit (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 27, R/Rw = 0.074/0.082. The compounds are built up by chains of [M2(OH)+] connected via Br?. The structure of the chains as well as their orientation to one another show a pronounced relationship to the structures of the room temperature modifications of the isotypic binary hydroxides KOH and RbOH.  相似文献   

5.
Synthesis and Crystal Structure of Sr2Zn(OH)6 and Ba2Zn(OH)6 Crystallization from supersaturated sodium hydroxozincate solutions by adding solutions of alkali earth metal hydroxides yields crystals of Sr2Zn(OH)6 and Ba2Zn(OH)6. The X-ray structure determination on these crystals was successful including all hydrogen positions: Sr2Zn(OH)6: P21/n, Z = 2, a = 5.794(1) Å, b = 6.160(1) Å, c = 8.141(1) Å, b = 91.23(1)°, N(F ³° 2σ F) = 1127, N(Var.) = 53, R1/wR2 = 0.047/0.081Ba2Zn(OH)6: P21/n, Z = 2, a = 6.043(1) Å, b = 6.336(1) Å, c = 8.451(2) Å, b = 91.23(2)°, N(F ° 2σ F) = 1669, N(Var.) = 54, R1/wR2 = 0.029/0.067. Sr2Zn(OH)6 and Ba2Zn(OH)6 crystallize isotypic in a distorted Li2O structure type. Sr2+ resp. Ba2+ form a cubic primitive arrangement. Distorted octahedra of OH around Zn2+ fill therein alternating cubic gaps in an ordered way.  相似文献   

6.
Crystal Structures and Hydrogen Bonding for β-Be(OH)2 and ϵ-Zn(OH)2 Crystals of β-Be(OH)2 sufficient for x-ray structure determination were grown from a saturated hot solution of freshly prepared Be(OH)2 in NaOH by slowly cooling down and in the case of ϵ-Zn(OH)2 by electrochemical oxidation of zinc in a NaOH/NH3 solution. The structures of the isotypic compounds were determined including the H-positions: β-Be(OH)2: P212121, Z = 4, a = 4.530(2) Å, b = 4.621(2) Å, c = 7.048(2) Å N(F > 3σ F) = 432, N(parameters) = 36, R/Rw = 0.044/0.052 ϵ-Zn(OH)2: P212121, Z = 4, a = 4.905(3) Å, b = 5.143(4) Å, c = 8.473(2) Å N(F > 3σ F) = 1107, N(parameters) = 36, R/Rw = 0.025/0.027For neutron diffraction experiments microcrystalline β-Be(OD)2 was prepared. With time-of-flight data the D positions were determined giving d(O–D) = 0.954(4) Å. The structures are closely related to that of β-cristobalite: As in SiO2 a quarter of tetrahedral interstices in a distorted cubic close packed arrangement of O is regularily occupied by the metal atoms. The filled O tetrahedra are twisted against one another in such a way, that O–H…O–H hydrogen bonds are favoured which are surprisingly stronger in the zinc than in the beryllium compound.  相似文献   

7.
Tetraammine Lithium Cations Stabilizing Phenylsubstituted Zintl-Anions: The Compound [Li(NH3)4]2[Sn2Ph4] Ruby-red, brittle single crystals of [Li(NH3)4]2[Sn2Ph4] were synthesized by the reaction of diphenyltin dichloride and metallic lithium in liquid ammonia at ?35°C. The structure was determined from X-ray singlecrystal diffractometer data: Space group, P1 , Z = 1, a = 9.462(2) Å, b = 9.727(2) Å, c = 11.232(2) Å, α = 66.22(3)°, β = 85.78(3)°, γ = 61.83(3)°, R1 (F ? 4σF) = 5.13%, wR2 (F02 ? 4σF) = 10.5%, N(F ? 4σF) = 779, N(Var.) = 163. The compound contains to Sb2Ph4 isosteric centres [Sn2Ph4]2? as anions which are connected to rods by lithium cations in distorted tetrahedral coordination by ammonia. These rods are arranged parallel to one another in the b,c-plane, but stacked along [100].  相似文献   

8.
Crystal Structure of SrZn(OH)4 · H2O Colorless crystals of SrZn(OH)4 · H2O are obtained by electrochemical oxidation of Zn in a zinc/iron pair in an aqueous ammonia solution saturated with strontium hydroxide. The X-ray crystal structure determination was now successful including all hydrogen positions: P1 , Z = 2, a = 6.244(1) Å, b = 6.3000(8) Å, c = 7.701(1) Å, α = 90.59(1)°, β = 112.56(2)°, γ = 108.66(2)°, N(F ≥ 3σF) = 1967, N(Var.) = 84, R/Rw = 0.020/0.024. In SrZn(OH)4 · H2O Zn2+ is tetrahedrally coordinated by four OH? -ions while Sr2+ has 6 OH? and one H2O as neighbours. The polyhedra around Sr2+ are connected to chains which are linked three-dimensionally by isolated tetrahedra [Zn(OH)4]. Hydrogen bonds between H2O as donor and OH? are characterized by raman spectroscopy.  相似文献   

9.
Synthesis and Crystal Structure of Manganese(II) and Zinc Amides, Mn(NH2)2 and Zn(NH2)2 Metal powders of manganese resp. zinc react with supercritical ammonia in autoclaves in the presence of a mineralizer Na2Mn(NH2)4 resp. Na2Zn(NH2)4_.0.5NH3 to well crystallized ruby‐red Mn(NH2)2 (p(NH3) = 100 bar, T = 130°C, 10 d) resp. colourless Zn(NH2)2 (p(NH3) = 3.8 kbar, T = 250°C, 60 d). The structures including all H‐positions were solved by x‐ray single crystal data: Mn(NH2)2: I41/acd, Z = 32, a = 10.185(6) Å, c = 20.349(7) Å, N(Fo) with F > 3σ (F) = 313, N(parameter) = 45, R/Rw = 0.038/0.043. Zn(NH2)2: I41/acd, Z = 32, a = 9.973(3) Å, c = 19.644(5) Å, N(Fo) with F > 3σ (F) = 489, N(parameter) = 45, R/Rw = 0.038/0.043. Both compounds crystallize isotypic with Mg(NH2)2 [1] resp. Be(NH2)2 [2]. Nitrogen of the amide ions is distorted cubic close packed. One quarter of tetrahedral voids is occupied by Mn2+‐ resp. Zn2+‐ions in such an ordered way that units M4(NH2)6(NH2)4/2 occur. The H‐atoms of the anions have such an orientation that the distance to neighboured cations is optimum.  相似文献   

10.
Crystal Structure of CaZn2(OH)6 · 2 H2O The electrochemical oxidation of zinc in a zinc/iron-pair leads in an aqueous NH3 solution of calciumhydroxide at room temperature to colourless crystals of CaZn2(OH)6 · 2 H2O. The X-ray structure determination was now successful including all hydrogen positions. P21/c, Z = 2, a = 6.372(1) Å, b = 10.940(2) Å, c = 5.749(2) Å, β = 101.94(2)° N(F ≥ 3σF) = 809, N(Var.) = 69, R/RW = 0.011/0.012 The compound CaZn2(OH)6 · 2H2O contains Zn2+ in tetrahedral coordination by OH? and Ca2+ in octahedral coordination by four OH? and two H2O. The tetrahedra around Zn2+ form corner sharing chains, three-dimensionally linked by isolated polyhedra around Ca2+. Weak hydrogen bridge bonds result between H2O as donor and OH?.  相似文献   

11.
Na4Br(NH2)3: An Amide Bromide in the System NaNH2/NaBr The pseudobinary system NaNH2/NaBr was investigated by X-ray methods. The crystal structure of Na4Br(NH2)3 was solved by single crystal data: Pnnm, Z = 4, a = 6.579(2) Å, b = 12.755(4) Å, c = 8.776(2) Å Z(Fo) with (Fo)2 ≥ 3σ = (Fo)2 = 503, Z(parameter) = 39, R/Rw = 0.082/0.106. It is a new type of structure, built up by a three-dimensional network of [Na4(NH2)3+] containing the bromide ions.  相似文献   

12.
Na2Mn(NH2)4: A New Type of Layered Structure The structure of Na2Mn(NH2)4 was solved by X-ray single crystal data including H-positions: P21/c, Z = 4, a = 6.331(1) Å, b = 14.542(3) Å, c = 7.212(1) Å, β = 116.29(1)°, Z(F ≥ 3σ = (F)) = 1343, Z(parameters) = 96, R/RW = 0.023/0.029. The compound crystallizes in a new type of structure. Within layered blocks the amide ions are arranged with the motif of a hexagonal closest packing of spheres. Within these blocks alternating layers contain sodium in all octahedral sites and manganese in an ordered way in a quarter of tetrahedral sites.  相似文献   

13.
The Crystal Chemistry of Copper Rare-Earth Oxotungstates: (I): triclinic-α-CuTbW2O8, (II): monoclinic-CuInW2O8 and (III): monoclinic-CuYW2O8 Single crystals of (I), (II) and (III) were prepared by recrystallisation in closed systems and examined by X-ray technique. (I): space group C? P1 , a = 7.3080, b = 7.8945, c = 7.1476 Å, α = 115.23, β = 116.21, γ = 56.98°, Z = 2; (II): space group C? C2/c, a = 9.6576, b = 11.6496, c = 4.9863 Å, β = 91.17°, Z = 4; (III): space group C? P2/n, a = 10.0504, b = 5.8214, c = 5.0224 Å, β = 94.23°, Z = 2. The crystal structures are discussed with respect to calculations of the coulombterms of lattice energy and possible valence states of Cu2+ and Mo5+.  相似文献   

14.
CuSeTeCl, CuSeTeBr, and CuSeTeI: Compounds with ordered [SeTe] Screws The hitherto unknown copper(I) chalcogen halides CuSeTeCl, CuSeTeBr and CuSeTeI have been prepared and their crystal structures were determined. The compounds of general composition CuSeTeX crystallize in the monoclinic system, space group P21/n (No. 14), Z = 4, a = 7.9796(9), b = 4.7645(8), c = 10.843(3) Å, β = 104.12(1)°, V = 399.8(1) Å3 (X = Cl), a = 8.155(3), b = 4.765(2), c = 11.286(4) Å, β = 104.21(3)°, V = 425.1(3) Å3 (X = Br) and a = 8.4370(9) b = 4.7652(5), c = 11.996(2) Å, β = 103.178(9)°, V = 469.6(1) Å3 (X = I). The crystal structures show infinite onedimensional screws YY′ of chalcogen atoms, with Y = Se and Y′ = Te alternately. The coordinations of Se and Te in these compounds are quite different.  相似文献   

15.
CuClS0.94Te1.06 and CuBrS0.92Te1.08, Two New Copper(I) Chalcogen Halides Containing Neutral [STe] Screws CuClS0.94Te1.06 and CuBrS0.92Te1.08 are two new, isotypic compounds of general composition CuXYY′ (X = halide, Y, Y′ = chalcogen) with a mixed chalcogen substructure. They crystallize in the monoclinic system, space group P21/n (No. 14), a = 7.878(2), b = 4.727(1), c = 10.759(2) Å, β = 103.97(2)°, V = 388.8(2) Å3 (CuClS0.94Te1.06) and a = 8.043(3), b = 4.746(2), c = 11.240(4) Å, β = 103.46(3)°, V = 417.3(3) Å3 (CuBrS0.92Te1.08), both with Z = 4. The crystal structures are dominated by ordered [STe±0]-screws. From a crystal chemical point of view the sulfur and tellurium atoms are significantly different. The melting points are 341 °C (CuClS0.94Te1.06) and 336 °C (CuBrS0.92Te1.08). The compounds CuXYY′ (X = Cl, Br, I; Y, Y′ = S, Se, Te) are compared and discussed.  相似文献   

16.
Synthesis and Crystal Structure of a Cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4] · 2 CsNH2 Well crystallized Cesium-tetraimidophosphate-diamide is obtained by the reaction of CsNH2 with P3N5 in autoclaves at 673 K within three days. X-ray single crystal investigations led to the following data
  • Ccca, Z = 4, a = 8.192(5) Å, b = 20.472(5) Å,
  • c = 8.252(3) Å
  • Z(F) ≥3σ(F) = 916, Z(Var.) = 32, R/Rw=1 = 0.017/0.021
The compound contains the hitherto unknown anion [P(NH)4]3?.  相似文献   

17.
Lithium Triamidostannate(II), Li[Sn(NH2)3] – Synthesis and Crystal Structure Rusty-red glistening, transparent crystals of Li[Sn(NH2)3] were obtained by reaction of metallic lithium with tetraphenyl tin in liquid ammonia at 110 °C. The structure was determined from X-ray single-crystal diffractometer data: Space group P 21/n, Z = 4, a = 8.0419(9) Å, b = 7.1718(8) Å, c = 8.5085(7) Å, β = 90.763(8)°, R1 (F o ≥ 4σ(F o)) = 2.8%, wR2 (F ≥ 2σ(F )) = 5.3%, N(F ≥ 2σ(F )) = 1932, N(Var.) = 65. The crystal structure contains trigonal pyramidal complex anions [Sn(NH2)3] with tin at the apex, which are connected to layers of sequence A B A B … by lithium in tetrahedra-double units [Li(NH2)2/2(NH2)2]2.  相似文献   

18.
Oxocobaltates of Alkali Metals. On Li8CoO6. Hitherto unknown Li8CoO6, rubin- red single crystals, cristallizes according to WEISSENBERG and precession photographs (MoKα) hexagonal with a = 5.44 Å, c = 10.87 Å; c/a = 2.0; Z = 2, space group C? P63cm. Atomic parameters see text. The structure derives from a closest packing of O2?, ABACA … (The tetrahedral, ?isolated”? groups [CoO4] show remarkable short distances Co–O (1.66 Å), comparable with [CoO4] in Li4CoO4, being isotypic with Li4SiO4. The MADELUNG Part of Lattice Energy is calculated and discussed.  相似文献   

19.
Compounds in the Systems Potassium(Rubidium)/Gold/Antimony: K3Au3Sb2, Rb3Au3Sb2, and K1,74Rb0,26RbAu3Sb2 Brittle, silver coloured single crystals of K3Au3Sb2, Rb3Au3Sb2 and K1,74Rb0,26RbAu3Sb2 were obtainded by reaction of the alkali metal azides (KN3, RbN3) with gold and antimon powder at 550°C. The structures of the isotypic compounds (R3 m, Z = 3) were determined by X-ray single-crystal diffractometer data: K3Au3Sb2, a = 6,198(2) Å, c = 21,520(5) Å, R/Rw (w = 1) = 0,046/0,058, Z(F) ? 3σ(F) = 175, Z(Var.) = 14; Rb3Au3Sb2, a = 6,443(3), c = 21,69(2), R/Rw (w = 1) = 0,059/0,082, Z(F) ? 3σ(F02) = 258, Z(Var.) = 14; K1,74Rb0,26RbAu3Sb2, a = 6,288(2) Å, c = 21,617(5) Å, R/Rw (w = 1) = 0,049/0,069, Z(F) ? 3σ(F) = 390, Z(Var) = 14. The compounds crystallize with the K3Cu3P2-structure type. The Au? Sb partial structures consist of [AuSb2/3] layers with linear Sb? Au? Sb dumb-bells and SbAu3 pyramids. The layers are separated by two crystallographically independent alkali metal atoms along [001].  相似文献   

20.
Na7I2(OH)5: A Hydroxide Iodide in the System NaOH/NaI The pseudobinary system NaOH/NaI is investigated by X-ray methods. The crystal structure of the compound Na7I2(OH)5 was solved by single crystal data: Na7I2(OH)5: P4/nmm, Z = 2, a = 7.748(2) Å, c = 10.260(3) Å, Z(Fo) = 443 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.044/0.059 Na7I2(OH)5 crystallizes in a new type of structure which contains puckered layers of ∞2[Na7(OH)52+] connected via iodide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号