首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Sodium triflate/polyether urethane polymer electrolytes ranging in concentration from 0.05 molal to 1.75 molal have been investigated via 23Na static solid-state NMR. Room temperature spectra and spin lattice relaxation times were consistent with a single narrow resonance indicating the presence of only mobile ionic species. The concentration and temperature dependence of relaxation times, chemical shifts, and linewidth have been investigated. The results suggest either a single species or rapid exchange between a number of species (even at temperatures below the glass transition temperature, Tg). The linewidth decreases with increasing concentration of ions and remains temperature independent below Tg. Below Tg a maximum quadrupolar interaction constant of 2 MHz is calculated. The addition of plasticizer to the polymer electrolyte causes significant chemical shift changes that depend on the solvent donicity of the plasticizer. The linewidth and T1 relaxation times also depend on the Tg of the plasticized systems. Previous 23Na NMR literature results are reviewed and qualitative models developed to account for the variation in results. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A model system of single-ion conducting network electrolytes with acrylic backbone, ethylene oxide (EO) side chains, tethered fluorinated anions, and mobile Li cations was designed and synthesized to investigate structure–property relationships. By systematically tuning four molecular variables, one at a time, we investigated how crosslinker length, mol% of crosslinker added, Li:EO ratio and side-chain length affect conductivity, Tg, and modulus. Ionic conductivity at 90 °C varied by two orders of magnitude (and by three orders of magnitude at room temperature) depending on the molecular details, while a 70 °C span in glass transition temperature (Tg) was observed. The range of crosslinking, which can be achieved without impacting conductivity was also elucidated, and the modulus of the electrolyte can be increased by a factor of 8, up to 2.4 MPa, without impacting ion transport. Changes in conductivity due to crosslink density and crosslinker length are fully explained in terms of Tg shifts, while comonomer length cannot be accounted for by such a shift. The best performing network exhibited 10−5 S/cm at high temperature, which is comparable to other single-ion conductors reported in the literature, while the modulus is higher due to crosslinking. Adding 10 wt% propylene carbonate further increased this value to 10−4 S/cm. This work provides insights into the structure–property relationships of solid-state polymer electrolytes, which retain conductivity but can potentially help suppress dendrites.  相似文献   

3.
Sorption and dilation isotherms for argon in poly(ethyl methacrylate) (PEMA) are reported for pressures up to 50 atm over the temperature range 5–85°C. At temperatures below the glass transition (Tg=61°C), sorption isotherms are well described by the dual-mode sorption model; and isotherms above Tg follow Henry's law. However, isotherms for dilation due to sorption are linear in pressure at all temperatures over the range investigated. Partial molar volumes of Ar in PEMA are obtained from these isotherms. The volumes are approximately constant above Tg (about 40 cm3/mol), whereas the volumes below Tg are smaller and dependent on both temperature and concentration (19–26 cm3/mol). By analyzing the experimental data according to the dual-mode sorption and dilation model, the volume occupied by a dissolved Ar molecule and the mean size of microvoid in the glass are estimated to be 67 129 Å3, respectively. The cohesive energy density of the polymer is also estimated as 61 cal/cm3 from the temperature dependence of the dual-mode parameters.  相似文献   

4.
Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of 4-(diethylamino)-4′-nitrotolane (DEANT) in poly(methyl methacrylate) (PMMA). The decay of the SHG signal from films of DEANT/PMMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature to 35°C above it. The activation volume, ΔV*αβ associated with the long range α-type motion of the polymer remained constant at 213 ± 10 Å3 between Tg − 25°C and Tg + 10°C. At higher temperatures, ΔV*αβ decreased linearly with increasing temperature. The activation volume, ΔV*αβ, associated with short range secondary relaxations was constant over the entire temperature range with a value of 77 ± 10 Å3. The data suggest that above Tg chromophore reorientation is coupled to both the long range and local motions of the polymer; whereas, well below Tg chromophore reorientation is closely coupled to the local relaxations of the polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 901–911, 1998  相似文献   

5.
The poly(butyl methacrylate) studied is a polymer with a normal molecular weight distribution and a relatively low molecular weight close to Mc, the critical molecular weight from the viscosity–molecular weight relation. The polymer was subjected to uniaxial extension and shear over a temperature range which included Tg. It was found that in the region of Tg an increase in applied stress is accompanied by a decrease both in the temperature shift factor aT and in the activation energy for relaxation and rupture of polymer melts. Close attention is given to the long-term durability of the polymer. As is expected in the temperature range below Tg, its dependence on the stress is exponential, whereas at temperatures above Tg a power law fits the data. In the latter case a log-log plot of the long-term durability versus stress can be represented by two intersecting straight lines which can be replotted as a generalized straight line if the long-term durability values are normalized by the viscosity.  相似文献   

6.
The evolution of lap-shear strength (σ) with healing temperature T h at symmetric and asymmetric amorphous polymer−polymer interfaces formed of the samples with vitrified bulk has been investigated. It has been found that the square root of the lap-shear strength behaves with respect to healing temperature as σ 1/2 ~ T h both at symmetric and asymmetric interfaces. Basing on this scaling law between σ and T h, the values of the surface glass transition temperature ( Tgsurface ) \left( {T_{\rm{g}}^{\rm{surface}}} \right) have been estimated for a number of amorphous polymers by the extrapolation of the experimental curves σ 1/2 ~ T h for symmetric polymer−polymer interfaces and, in some cases, for asymmetric, both compatible and incompatible, polymer−polymer interfaces, to zero strength. A significant reduction in surface glass transition temperature Tgsurface T_{\rm{g}}^{\rm{surface}} with respect to the glass transition temperature of the polymer bulk ( Tgbulk ) \left( {T_{\rm{g}}^{\rm{bulk}}} \right) , reported earlier, has been confirmed by the use of the new proposed approach. The quasi-equilibrium surface glass transition temperature Tgsurface T_{\rm{g}}^{\rm{surface}} of amorphous polystyrene (PS) has been predicted in the framework of an Arrhenius approach using the plot “logarithm of healing time − reciprocal surface glass transition temperature Tgsurface¢¢ T_{\rm{g}}^{\rm{surface}}\prime \prime and the activation energy of the surface alpha-relaxation of PS has been calculated.  相似文献   

7.
In a search for a liquid-liquid transition in the melt of polystyrene, we have measured and analyzed a number of compression isotherms to 1800 kg/cm2 in a relevant temperature range (1.2Tg < T < 1.4Tg). Volume data were recorded at pressure intervals of 10 kg/cm2, i.e., at pressure intervals 5-20 times smaller than used in previous work. For the analysis the data were fitted to the Tait equation. Deviations between fits and data are small, typically 0.0004 cm3/g, but nonrandom. From the absence of any systematic shifts of the nonrandom deviation patterns with temperature, we conclude that the deviations are not manifestations of a pressure-dependent liquid-liquid transition, and that there is, in fact, no evidence for the existence of such a transition in our data.  相似文献   

8.
Glass transition temperature (Tg) plays an important role in controlling the mechanical and thermal properties of a polymer. Polyimides as an important category of engineering plastics have wide applications because of their superior heat resistance and mechanical strength. The capability of predicting Tg for a polyimide a priori is therefore highly desirable in order to expedite the design and discovery of new polyimide polymers with targeted properties and applications. Here we explore three different approaches to either compute Tg for a polyimide via all-atom molecular dynamics simulations or predict Tg via a mathematical model generated by using machine-learning algorithms to analyze existing data collected from the literature. Our simulations reveal that Tg can be determined from examining the diffusion coefficient of simple gas molecules in a polyimide as a function of temperature and the results are comparable to those derived from data on polymer density versus temperature and actually closer to the available experimental data. Furthermore, the predictive model of Tg derived with machine-learning algorithms can be used to estimate Tg successfully within an uncertainty of about 20 degrees, even for polyimides yet to be synthesized experimentally.  相似文献   

9.
Polymer electrolytes which are adhesive, transparent, and stable to atmospheric moisture have been prepared by blending poly(methyl methacrylate)-g-poly(ethylene glycol) with poly(ethylene glycol)/LiCF3 SO3 complexes. The maximum ionic conductivities at room temperature were measured to be in the range of 10−4 to 10−5 s cm−1. The clarity of the sample was improved as the graft degree increased for all the samples studied. The graft degree of poly(methyl methacrylate)-g-poly(ethylene glycol) was found to be important for the compatibility between the poly(methyl methacrylate) segments in poly(methyl methacrylate)-g-poly(ethylene glycol) and the added poly(ethylene glycol), and consequently, for the ion conductivity of the polymer electrolyte. These properties make them promising candidates for polymer electrolytes in electrochromic devices. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
A new network polymer electrolyte matrix with polyether in the side chains and main chains was synthesized by the azo-macroinitiator method and urethane reaction. The macroinitiator, polymer and network polymer were confirmed by Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR. FT-IR was also used to study the environment of lithium ions doped in these network polymer electrolytes. Three important groups are considered: N-H, carbonyl, and ether groups. The thermal properties of the polymer electrolytes were measured by differential scanning calorimetry and thermogravimetric analysis. The Tg value of this polymer is less than that of a general comb-like polymer. Added lithium ions interact with the oxygen atoms on ether groups, causing the Tg of the polymer electrolyte to increase. Moreover, the interaction between lithium ions and ether groups decreases the decomposition temperature of the polymer. The conductivity measured by AC impedance reached a maximum of 10−4 S cm−1. A plot of conductivity vs. temperature fit the Vogel-Tamman-Fulcher equation, indicating that ionic mobility in this network polymer electrolyte is coupled to segmental chain movements.  相似文献   

11.
The temperature dependence of radiation-induced grafting onto poly(ethylene terephthalate), polyamides, polyacrylonitrile, and polypropylene has been investigated for several monomers. In all cases a maximum grafting yield is obtained when the reaction is performed in the temperature range of the glass transition Tg of the polymer used. This maximum yield does not only appear with radiation-induced simultaneous grafting. It also appears when the graft polymerization is induced by pre-irradiation or even by thermal decomposition of organic peroxides. It is assumed that the pronounced maximum of the reactivity at Tg is obtained because in the glassy state below Tg the radicals formed cannot react due to a reduced diffusion of the monomer, whereas above Tg the number of radicals available for polymerization will be reduced with increasing temperature.  相似文献   

12.
The polymer electrolytes based on poly N-vinyl pyrrolidone (PVP) and ammonium thiocyanate (NH4SCN) with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The shift in Tg values and the melting temperatures of the PVP-NH4SCN electrolytes shown by DSC thermo-grams indicate an interaction between the polymer and the salt. The dependence of Tg and conductivity upon salt concentration have been discussed. The conductivity analysis shows that the 20 mol% ammonium thiocyanate doped polymer electrolyte exhibit high ionic conductivity and it has been found to be 1.7 × 10−4 S cm−1, at room temperature. The conductivity values follow the Arrhenius equation and the activation energy for 20 mol% ammonium thiocyanate doped polymer electrolyte has been found to be 0.52 eV.  相似文献   

13.
The intrinsic and thermal characteristics of poly(styrenephosphonate diethyl ester)s (PSP) are described. The properties of the polymer prepared by two synthetic procedures, phosphorylation of monodispersed polystyrene and polymerization of vinylbenzenephosphonate ester, are compared with chloromethylated polystyrene and with each other. Empirical formulas are presented for the relationships between the degree of polymerization, degree of phosphorylation, molecular weight, and intrinsic viscosity (in methanol and toluene). Thermal analysis reveals a sharp drop in Tg with an increase in degree of phosphorylation; Tg of the fully phosphorylated polystyrene is in the range of 9–30°C. The Tg ΔCp values show significant decrease with augmentation in the degree of phosphorylation, yielding a value of 14 cal g?1 for the fully phosphorylated polymer, compared with ~ 29 cal g?1 for the parent polymer. The PSP is shown to have substantial capacity for dissolving heavy metal salts, such as UO2(NO3)2, causing significant elevation in the Tg.  相似文献   

14.
A commercial set of polymers has been characterized by TG-DTA, DSC, TMA, FTIR spectroscopy and X-ray diffraction analysis (XRD). Thermal and mechanical stability, as well as the polymer glass transition temperature,T g, and melt temperature,T m, have been documented. There is a good correlation between measuredT g andT m values and published data. The degree of polymer crystallinity for polyethylene has been verified by XRD. The credibility and stability of these reference polymers is based on a comparison of their thermal properties, over a wide range of temperatures from two versions of a reference set, published in 1979 (A) and 1994 (B). The thermal properties and crystallinity of these polymers have stood the test of time and are reliable, readily available and consistent.  相似文献   

15.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

16.
Incoherent neutron scattering is presented as a powerful tool for interpreting changes in molecular dynamics as a function of film thickness for a range of polymers. Motions on approximately nanosecond and faster timescales are quantified in terms of a mean-square atomic displacement (〈u2〉) from the Debye–Waller factor. Thin-film confinement generally leads to a reduction of 〈u2〉 in comparison with the bulk material, and this effect becomes especially pronounced when the film thickness approaches the unperturbed dimensions of the macromolecule. Generally, there is a suppression (never an enhancement) of 〈u2〉 at temperatures T above the bulk calorimetric glass-transition temperature (Tg). Below Tg, the reduction in the magnitude of 〈u2〉 depends on the polymer and the length scales being probed. Polymers with extensive segmental or local mobility in the glass are particularly susceptible to reductions of 〈u2〉 with confinement, especially at the Q vectors probing these longer length scales, whereas materials lacking these sub-Tg motions are relatively insensitive. Moreover, a reduced 〈u2〉 value correlates with reduced mobility at long time and spatial scales, as measured by diffusion in these thin polymer films. Finally, this reduced thin-film mobility is not reliably predicted by thermodynamic assessments of an apparent Tg, as measured by discontinuities or kinks in the T dependence of the thermal expansion, specific volume, index of refraction, specific heat, and so forth. These measurements illustrate that 〈u2〉 is a powerful and predictive tool for understanding dynamic changes in thin polymer films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3218–3234, 2004  相似文献   

17.
The effect of nanoscale confinement on the glass transition temperature, Tg, of freely standing polystyrene (PS) films was determined using the temperature dependence of a fluorescence intensity ratio associated with pyrene dye labeled to the polymer. The ratio of the intensity of the third fluorescence peak to that of the first fluorescence peak in 1-pyrenylmethyl methacrylate-labeled PS (MApyrene-labeled PS) decreased with decreasing temperature, and the intersection of the linear temperature dependences in the rubbery and glassy states yielded the measurement of Tg. The sensitivity of this method to Tg was also shown in bulk, supported PS and poly(isobutyl methacrylate) films. With free-standing PS films, a strong effect of confinement on Tg was evident at thicknesses less than 80–90 nm. For MApyrene-labeled PS with Mn = 701 kg mol−1, a 41-nm-thick film exhibited a 47 K reduction in Tg relative to bulk PS. A strong molecular weight dependence of the Tg-confinement effect was also observed, with a 65-nm-thick free-standing film exhibiting a reduction in Tg relative to bulk PS of 19 K with Mn = 701 kg mol−1 and 31 K with Mn = 1460 kg mol−1. The data are in reasonable agreement with results of Forrest, Dalnoki-Veress, and Dutcher who performed the seminal studies on Tg-confinement effects in free-standing PS films. The utility of self-referencing fluorescence for novel studies of confinement effects in free-standing films is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2754–2764, 2008  相似文献   

18.
Hydrostatic pressure usually increases the glass transition temperature Tg of a polymer glass by decreasing its free volume; if the pressurizing environment is soluble in the polymer, however, one might expect an initial decrease in Tg with pressure as the polymer is plasticized by the environment. Just such a minimum in the Tg of polystyrene (PS) is observed as the pressure of CO2 gas is increased over the range 0.1–105 MPa from both ultrasonic (1 MHz) measurements of Young's modulus E and static measurements of the creep compliance J. A time-temperature-pressure superposition law is obeyed by PS which allows a master curve for the compliance to be constructed and shift factors to be determined. A master curve for E is then obtained by using the Boltzmann superposition principle. The compliance J reaches a maximum, and E and Tg reach minima, at a CO2 pressure of ca. 20 MPa at both 34 and 45°C, which are above the critical temperature (31°C) of CO2. At the minimum, Tg is 41 at 45°C and 36 at 34°C, the larger depression at 34°C evidently corresponding to the higher solubility of CO2 at the lower temperature. The plasticization effect due to CO2 can be isolated by subtracting the effect of hydrostatic pressure alone from the experimental data. The results leave no doubt that at high pressures CO2 gas is a severe plasticizer for polystyrene.  相似文献   

19.
On increasing the temperature of a polymer, the transition of the polymer from a rubbery elastic state to a fluid state could occur. The transition temperature is termed the fluid temperature of the polymer, T f, which has a direct relationship with the polymer molecular weight. As one of polymer parameters, T f is as important as the glass transition temperature of a polymer, T g. Moreover, special attention to T f should be paid for polymer processing. In research on the transition of a polymer from a rubbery elastic state to a fluid state, the concept of T f would be more reasonable and more effective than the concept of T l,l because it is neglected in the concept of T l,l in that the molecular weight of a polymer may affect the transition of the polymer. In this paper the discussion on the fluid temperature involves the characters of polymers, such as the deformation—temperature curve, the temperature range of the rubbery state and the shear viscosity of polymer melt. From the viewpoint of the cohesional state of polymers, the transition of a polymer from a rubbery elastic state to a fluid state responds to destruction and construction of the cohesional entanglement network in the polymer. The relaxing network of polymer melt would be worthy to be considered as an object of study. __________ Translated from Huaxue Tongbao (Chemistry), 2008,71(3) (in Chinese)  相似文献   

20.
The molecular motion of crosslinked polyepichlorohydrin (PECH) is studied qualitatively by NMR techniques. The results of temperature dependence of 1H T2 and T1 indicate that the crosslinking (crosslink density < 3%) restricts molecular motions of the polymer even far above its Tg. The 1H T1 minimum, corresponding to the large-scale chain-motion of crosslinked PECH, shifts to higher temperatures with increasing crosslink density. 1H T2 data also show that the crosslinking hinders free chain motions of the polymer above its Tg. The 13C T1 relaxation time is sensitive to such motional changes as well. 13C linewidths of crosslinked PECHs vary with the crosslink density in both the swollen state and the solid state. The mechanism of 13C linewidth broadening of crosslinked polymers is discussed in detail. In the case of PECH, the linewidth broadening is caused by changing molecular environment due to crosslinking (such as presence of various chemical shift structures and freezing effects in conformational environment as chain mobility decreases), rather than increasing correlation times, which shorten the relaxation time (T2) of polymer chains. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号