首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Two series of poly(amide-azomethine-ether)s and poly(ester-azomethine-ether)s were prepared by the condensation of dialdehydes with N,N'-bis(aminobenzamide)s and 4,4′-bis(p-aminophenyl)terephthalester, respectively. The thermotropic liquid crystalline properties were examined by DSC microscopic observations. Almost half of the synthesized polymers exhibit thermotropic liquid crystalline properties which are in the nematic phase since threaded and/or Schlieren textures are observed under polarizing microscope. The effects of the number of amide group and the nature of the nonlinear bibenzamide moiety, which link in the rigid segment, on the thermotropic liquid crystalline properties of the homo- and co-poly(amide-azomethine-ether)s were also investigated.  相似文献   

2.
Three series of thermotropic liquid crystalline polycarbonates and poly(ester‐carbonate)s were prepared by solution polycondensation of 4,4′‐biphenyldiol (BP), 4′‐hydroxybiphenyl‐4‐hydroxybenzoate (HHB), or 4‐hydroxyphenyl‐4″‐hydroxybiphenyl‐4′‐carboxylate (HHBP), as mesogenic unit, with 1,10‐bis(p‐hydroxybiphenoxy)decane (N10), bisphenol A (BPA), 4,4′‐dihydroxy‐diphenyl ether (BPO), 4,4′‐[phenylbis(oxy)]bisphenol (BPOO), methylhydroquinone (MeHQ), or phenylhydroquinone (PhHQ). One series of cholesteric poly(ester‐carbonate)s were also prepared by using HHBP, the aromatic diols mentioned above and isosorbide as the chiral moiety. All polycondensations were implemented in pyridine by using triphosgene as the condensation agent. The synthesized polycarbonates were characterized by viscometer, FTIR, DSC, TGA measurements, polarizing microscopy equipped with a heating stage, and WAXD powder pattern. In this study, it was found that the liquid crystalline properties of polycarbonates strongly rely on the mesogenic unit applied. HHBP‐series exhibits a wide temperature region of liquid crystalline (LC) phase even with 50% of bisphenol A (BPA), which is a V‐shaped structure and usually destroys liquid crystalline properties. In addition, homopolycarbonate with HHBP structure possesses extraordinarily low phase‐transition temperature and wide liquid crystalline phase range, due to its asymmetric structure. This asymmetric structure results in head‐to‐tail, head‐to‐head, and tail‐to‐tail random conformation of polymer chain. The isosorbide containing poly(ester‐carbonate)s formed cholesteric phase, which showed homogeneous blue, green, or red Grandjean texture upon shearing in molten state and the Grandjean texture could be frozen easily while quenching the sample to the room temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1852–1860, 2000  相似文献   

3.
Three series of novel thermotropic liquid crystalline polyurethane elastomers (TLCPUEs) were studied. Hard segments were formed by using hexamethylene diisocyanate (HDI) reacted with a mesogenic unit, benzene-1,4-di(4-iminophenoxy-n-hexanol), which also acted as a chain extender. Three diols: 1,10-decanediol,poly(oxytetramethylene) glycol (PTMEG) M n = 1000 and PTMEG M n = 2000 were used as the soft segments. The effects of soft segments of polyurethanes on the liquid crystalline behavior were studied. Higher molecular weight TLCPUEs were obtained by adding 30?50 mol % of mesogenic segments to diisocyanates. In contrast to a conventional chain extender such as 1,2-ethylene glycol or 1,4-butyl glycol, the synthesized polyurethane elastomers exhibited a mesophase transition by using a mesogenic unit as the chain extender. Mesophase was found for all synthesized LC polyurethanes except of polymers H2-A-12 and H2-A-7. The structures and the thermal properties of all synthesized TLCPUEs were studied by using FTIR spectroscopy, wide-angle x-ray diffraction (WAXD) and DSC measurements, a polarizing microscope equipped with a heating stage, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Mechanical properties were also examined by using a tensilemeter. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Liquid crystalline polyurethanes were prepared from 4,4′-bis(2-hydroxyethoxy)biphenyl (BHBP) and 2,4-tolylene diisocyanate (TDI). The effect of partial replacement of BHBP by 25–75 mol % poly(oxytetramethylene) diol (PTMO, M n = 250) on the liquid crystalline properties was studied. The BHBP/TDI/PTMO polyurethanes were obtained by one- and two-step polyaddition. The polyurethanes were investigated by DSC, polarizing microscopy, x-ray, and IR spectroscopy. The molecular weight distribution was determined by GPC. The morphology of the polymers was investigated by the SALS method. Thermogravimetric investigations of the polyurethanes were also performed. All polyurethanes containing BHBP units have liquid crystalline properties. Partial replacement of BHBP by PTMO-250 considerably changes the phase transition temperatures and the range of mesophase occurrence. More homogeneous polyurethanes were obtained, if the two-step polyaddition method was applied. The polyaddition method affects the phase transition temperatures. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
New semi-rigid polyesters composed of the distyrylbenzene analogue of 1,3,4-thiadiazole, 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole and aliphatic (dodeca-, deca- and octamethylene) chains were prepared by high temperature solution polycondensation; their liquid crystalline (LC) and photoluminescent properties were investigated. Differential scanning calorimetry, polarizing microscopy and powder X-ray diffraction show that the polyesters having both dodeca- and decamethylene chains form a thermotropic smectic C phase and a lyotropic LC phase in trifluoroacetic acid, but the polyester containing octamethylene chains only exhibits a thermotropic smectic C phase. Solution and solid state absorption and fluorescent spectra indicate that all the polyesters in this work display absorption maxima based on the 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole moiety, emitting blue light in HFIP solutions and bluish-green light in solids; the Stokes shifts are 80.1-80.7 nm in solution and 74.2-87.2 nm in the solid state.  相似文献   

6.
2,2′-Azobis-[2-cyano-(4-ethylphenol)] (ABCP) was prepared from parahydroxyacetophenone, using hydrazine sulfate and sodium cyanide. Biphenylol ester of ABCP, 2,2′-azobis-[2-p-biphenyloxy-(4-ethylphenol)] (BECP) was synthesized via the acid route. Combined liquid crystalline polyurethanes (CLCPUs) were synthesized from 1,6-diisocyanatohexane (HDI) and BECP in dimethylformamide (DMF) at 110°C under nitrogen atmosphere. The effect of partial replacement of BECP by 4,4′-dihydroxy biphenyl (DHBP) on liquid crystalline (LC) properties was studied. The polymers were characterized by proton and 13C NMR, FTIR, and UV spectroscopy. Elemental analysis were done for determining the percentage content of C, H, and N and the molecular weights of the polymers were determined by gel permeation chromatography (GPC). Thermogravimetric investigations (TGA) of the polyurethanes (PUs) were performed to study the decomposition. The LC nature of the PUs was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Cross-polarized optical microscopy studies demonstrated the existence of two distinct crystalline morphologies, a spherulitic morphology with high mole ratio of DHBP and a thread-like crystalline morphology with that of BECP. All the PUs synthesized showed a LC nature with a wide temperature range. Partial replacement of BECP by DHBP changed the mesomorphic nature, transition temperature, and temperature range of the mesophase. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A series of novel dialdehydes as new monomers, 4,4′-diformyl-α,ω-diphencarbonylalkane, 4,4′-diformyl-3,3′-methoxy-α,ω-diphencarbonylalkane, and 4,4′-diformyl-3,3′-ethoxy-α,ω-diphencarbonylalkane, was prepared from aliphatic diacid chloride with p-hydroxybenzaldehyde, vanillin, and 3-ethoxy-4-hydroxybenzaldehyde, respectively. A series of poly(amide-azomethine-ester)s was prepared by condensation of 4,4′-diaminoanilide with 4,4′-diformyl-α,ω-α,ω-diphencarbonylalkane, 4,4′-diformyl-3,3′-methoxy-α,ω-diphencarbonylalkane, and 4,4′-diformyl-3,3′-ethoxy-α,ω-diphencarbonylalkane, respectively. Their thermotropic liquid crystalline properties were examined by DSC microscope observations. In most cases, the mesophase extends up to ca. 288–380°C, where thermal decomposition prevents further observation.  相似文献   

8.
Four series of fully aromatic thermotropic liquid crystalline polycarbonates were prepared by melt polycondensation from various novel phenylene diphenyl dicarbonates with monomers, such as hydroquinone, methylhydroquinone, chlorohydroquinone, resorcinol, bisphenol A, 4,4′-dihydroxydiphenylsulfone, or phenylhydroquinone, respectively. The thermotropic liquid crystalline properties were studied by polarizing microscope with a heating stage, differential scanning calorimeter (DSC), and wide-angle x-ray diffraction (WAXD). It was found that the nonlinearity of the carbonate group was compensated by resorcinol (1,3-phenylene unit), a bent shape unit. Nematic melts were found for the resulting polycarbonates. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Novel semi-rigid polyesters containing a quinquephenyl analogue containing 1,3,4-thiadiazole and a central 1,3-phenylene unit in the main chain were synthesized by high temperature solution polycondensation of a dimethyl ester derivative of 1,3-bis(5-phenyl-1,3,4-thiadiazol-2-yl)benzene with an aliphatic (octa-, deca- and dodecamethylene) diol. The proposed structures were confirmed using FTIR and 1H NMR spectroscopies, and elemental analyses; their liquid crystalline and photoluminescent (PL) properties were examined by means of differential scanning calorimetry, optical texture observations using polarizing microscopy, powder X-ray diffraction, and UV-vis and PL spectra measurements. These measurements showed that the polymers not only show a monotropic solid smectic or disordered crystal phase, but also PL properties with blue emission in HFIP solutions and in the solid phase, Stokes shifts of 116.5–119?nm being observed.  相似文献   

10.
New semi-rigid polyesters composed of the distyrylbenzene analogue of 1,3,4-thiadiazole, 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole and aliphatic (dodeca-, deca- and octamethylene) chains were prepared by high temperature solution polycondensation; their liquid crystalline (LC) and photoluminescent properties were investigated. Differential scanning calorimetry, polarizing microscopy and powder X-ray diffraction show that the polyesters having both dodeca- and decamethylene chains form a thermotropic smectic C phase and a lyotropic LC phase in trifluoroacetic acid, but the polyester containing octamethylene chains only exhibits a thermotropic smectic C phase. Solution and solid state absorption and fluorescent spectra indicate that all the polyesters in this work display absorption maxima based on the 2,5-bis(2-phenylethenyl)-1,3,4-thiadiazole moiety, emitting blue light in HFIP solutions and bluish-green light in solids; the Stokes shifts are 80.1-80.7 nm in solution and 74.2-87.2 nm in the solid state.  相似文献   

11.
Four series of fully aromatic polycarbonates were prepared by using melt polycondensation from various novel phenylene diphenyl dicarbonates: 1,4-phenylenc diphenyl dicarbonate, 1,3-phenylene diphenyl dicarbonate, methyl-1,4-phenylene diphenyl dicarbonate, and chloro-1,4-phenylene diphenyl dicarbonate with various diols—4,4′-biphenyl diol, hydroquinone, 2,7-naphthalene diol and 1,5-naphthalene diol, respectively. The thermotropic liquid crystalline properties of synthesized polycarbonates were investigated by: (1) examination of the melt birefringence and stir opalescence by a polarizing microscope equipped with a heating stage, (2) characterization by a differential scanning calorimeter (DSC), and (3) analysis of the wide angle x-ray diffraction. It was found that the 1,3-phenylene unit is compensated for the nonlinearity of the carbonate group, and polycarbonates which contain this bent shape unit showed excellent wide mesophase transition in this study. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The synthesis of three cyclic imino ethers containing mesogenic groups attached to the heterocyclic unit through flexible spacers is described. Cationic ring-opening isomerization polymerization of two of them, i.e., 2-[4-(4-methoxy-4′-biphenyloxy)butyl]-2-oxazoline (MeOBiph-4-Oxz) and 2-[6-(4-methoxy-4′-biphenyloxy)hexyl]-2-oxazoline (MeOBiPh-6-Oxz) provided thermotropic liquid crystalline (LC) poly(N-acylethyleneimine)s, whereas the polymerization of 2-[4-(4-phenylphenoxy)butyl]-2-oxazoline (BiPh-4-Oxz) led to a crystalline polymer.  相似文献   

13.
This work is a continuation of our earlier investigations of liquid crystalline polyurethanes prepared from 4,4′-bis(2-hydroxyethoxy) biphenyl (BHBP), 2,4-tolylene diisocyanate (TDI), and poly (oxytetramethylene) diols (PTMO). The annealing effects on the thermal properties of the investigation polyurethanes are presented for three samples with the same BHBP content, different flexible spacer length, and different molecular weight of the polyurethanes. The annealed polyurethanes were investigated by means of DSC, and polarizing microscopy. The results of the thermal analysis show that the temperatures of phase transitions depend on the annealing temperature and time. These dependences are different for different molecular weights. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
New semi-rigid copoly(imide-carbonate)s composed of 3,4,3",4"-p-terphenyltetracarboxdi-imide and 3,4,3',4'-biphenyltetracarboxdi-imide units and neighbouring homologous penta- and hexa-methylene spacer chains were prepared by melt polycondensation; the relationships between polymer structure and liquid crystalline (LC) properties are discussed. Differential scanning calorimetry measurements, polarizing microscope observations, miscibility tests and variable temperature X-ray analyses suggest that the 3,4,3",4"-p-terphenyltetracarboxdi-imide-rich copolymers form thermotropic LC nematic and smectic phases, but the 3,4,3',4'-biphenyltetracarboxdi-imide-rich copolymers are amorphous and have no LC melts. Therefore, the presence of 3,4,3",4"-p-terphenyltetracarboxdi-imide units confers good mesogenic properties.  相似文献   

15.
Two series of new dimesogenic liquid crystalline compounds were synthesized and their LC and other thermal properties were characterized. These compounds consist of two mesogenic units connected through polymethylene spacer of varying length in the shape of the letter ‘T’. The difference between the two series is in the structure of tail groups attached on the pendant azobenzene mesogens; one of which is n-butyl and the other is phenyl. The compounds were characterized for their liquid crystallinity by the differential scanning calorimetry (DSC), X-ray diffractometry and visual observation of the melts on a hot-stage attached to a polarizing microscope. All these compounds were found to form only the nematic phase enantiotropically.  相似文献   

16.
Novel semi-rigid polyesters containing a quinquephenyl analogue containing 1,3,4-thiadiazole and a central 1,3-phenylene unit in the main chain were synthesized by high temperature solution polycondensation of a dimethyl ester derivative of 1,3-bis(5-phenyl-1,3,4-thiadiazol-2-yl)benzene with an aliphatic (octa-, deca- and dodecamethylene) diol. The proposed structures were confirmed using FTIR and 1H NMR spectroscopies, and elemental analyses; their liquid crystalline and photoluminescent (PL) properties were examined by means of differential scanning calorimetry, optical texture observations using polarizing microscopy, powder X-ray diffraction, and UV-vis and PL spectra measurements. These measurements showed that the polymers not only show a monotropic solid smectic or disordered crystal phase, but also PL properties with blue emission in HFIP solutions and in the solid phase, Stokes shifts of 116.5-119 nm being observed.  相似文献   

17.
A series of polyamide-azomethine-ethers was prepared by condensation of 4,4′-diaminoanilide with 4,4′-diformyl-α,ω-diphenoxyalkane, 4,4′-diformyl-3,3′-methoxy-α,ω-diphenoxyalkane, and 4,4′-diformyl-3,3′-ethoxy-α,ω-diphenoxyalkane, respectively. The inherent viscosities of polymers were obviously increased when the polymers were treated by heat under nitrogen at 220°C. The thermotropic liquid crystalline properties were examined by DSC, microscope observations, and TGA. All of the polymers, except polymer A-1, exhibit thermotropic liquid crystalline properties. They also exhibit threaded and/or Schlieren textures examined by the polarizing microscope which indicate a nematic phase. In most cases, the mesophase exists up to ca. 400-460°C shown by TGA study. The mesophase cannot exist above 400-460°C because of the thermal decomposition.  相似文献   

18.
A series of poly(ester-imide-ether), consisting of soft segments from poly(tetramethylene glycol) and N,N′-bis(2-carboxyethyl) pyromellitimide and hard segments based on 1,4-butanediol and N,N′-bis(2-carboxyethyl) pyromellitimide, were synthesized via the melt polycondensation. The chemical structures of the prepared elastomers were confirmed by Fourier transform infrared spectroscopy and 1HNMR, respectively. The results indicated that the introduction of aromatic bisimide groups endows the elastomers with excellent thermal stability and mechanical property, which increase with the increment of imide unit content in the prepared elastomers. Additionally, compared to the poly(ester-ether) elastomer, these poly(esterimide-ether) fibers displayed stronger tensile strength and better low-temperature elastic recovery property.  相似文献   

19.
Side chain liquid crystalline polysiloxanes were synthesized by the hydrosilation of poly(methylhydrosiloxane) with p-(1-undecenyl-11-oxy) benzyl ethers of 4-cyanophenol (IM), 4-methoxyphenol (IIM), 4-cyano-4′-hydroxybiphenyl (IIIM), 4-methoxy-4′-hydroxybiphenyl (IVM), and 2-cyano-6-hydroxynaphthalene (VM). The phase behavior of both monomeric and polymeric liquid crystals was characterized by differential scanning calorimetry and optical polarization microscopy. IM is a monotropic liquid crystal, IIM is crystalline, and IIIM and IVM are enantiotropic liquid crystals, whereas VM presents two virtual liquid crystalline transitions and crystalline polymorphism. All the synthesized polysiloxanes present enantiotropic smectic mesomorphism.  相似文献   

20.
A series of crosslinkable thermotropic liquid crystalline poly(ether-ester)s and copoly(ether-ester)s was prepared. All of the polymers were crosslinked by thermal treatment or photo-irradiation upon heating. The thermal stability and thermal crosslinking reaction of these polymers were investigated. These polymers also could be crosslinked by copolymerization with vinyl monomers, such as styrene or methyl methacrylate. The crosslinked polymers exhibited thermotropic liquid crystalline behavior after softening by heating. The phase behavior of linear polymers and crosslinked polymers was studied by differential scanning calorimetry (DSC) and an optical polarizing microscope equipped with a heating stage. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号