首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crack healing induced by carbon tetrachloride in polycarbonate has been studied at temperatures in the range of 40–60°C. The carbon tetrachloride treatment reduces the glass transition temperature of polycarbonate. Crack healing is observed because the effective glass transition temperature in polycarbonate is reduced to below the test temperature by the carbon tetrachloride treatment. Two distinctive stages of crack healing are divided based on the recovery of mechanical strength and fractograph. The first stage corresponds to the progressive healing due to the convolution of wetting and self-diffusion, which has a constant crack closure rate. Immediately following the first stage, the second stage, corresponding to the self-diffusion of polymer chain, enhances the quality of healing behavior. The transport of carbon tetrachloride in polycarbonate consists of case I (concentration gradient controlled) and case II (relaxation controlled) behaviors. The direction of case II is opposite to that of case I. The solubility decreases with increasing temperature, but diffusivity and velocity for mass transfer, crack closure rate, and diffusion coefficient for the diffusion front have the opposite trend. The first stage of crack healing is controlled by case II transport. The transport of carbon tetrachloride changes the fracture behavior of polycarbonate from ductile to brittle. A comparison of crack healing in polycarbonate and poly (methyl methacrylate) is made. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The kinetics of ethanol, n-propanol, and n-butanol penetration, sorption, and dimensional swelling in 2 mm poly(methyl methacrylate) sheets were determined over the temperature range 50–95°C. At 50°C, Case II relaxation-controlled transport dominated the observed sorption and penetration kinetics for all three alcohols. At higher temperatures, diffusion of swelling penetrant to the relaxing boundary contributes increasingly to the observed sorption kinetics. In addition, as the temperature is raised, the completion of sorption lags significantly behind the penetration of the relaxing boundary to the sheet midplane. p]The activation energy describing low temperature penetration is significantly higher than the activation energy describing the temperature dependence of high temperature penetration. A distinct transition in the penetration kinetics is apparent for all three alcohols at approximatively 65°C. Independent Clash—Berg determinations of the Tg of the alcohol-swollen sheets indicate that the transition in behaviour is not related to a thermal transition in the polymer, but rather to the generation of diffusional resistance in the high temperature penetration experiments which is comparable to the otherwise rate-determining Case II relaxations dominant in low temperature penetration. At high temperatures, the overall activation energy reflects the combination of diffusional absorption and the more highly activated relaxation-controlled transport. At low temperatures, diffusion of penetrant to the relaxing boundary is rapid compared with the slow, rate determining relaxations and, therefore, the concentration of penetrant is everywhere uniform within the already swollen shell. The extra-ordinarily high apparent activation energy describing the temperature dependence of the initial sorption rate at low temperature reflects the endothermic enthalpy of sorption of alcohols in PMMA as well as the strong coupling between relaxation rate and the penetrant concentration driving the rate determining relaxations. p]Clash—Berg measurements of the temperature dependence of the ten second shear moduli in partially swollen sheets, completely swollen sheets, and unswollen sheets suggest a Tg of approximatively 40°C in the alcohol-swollen PMMA. Moreover, an analysis of the Clash—Berg measurements suggests that the properties of the swollen regions of partially penetrated sheets are identical to the properties of the completely swollen sheets.  相似文献   

3.
The slow crack growth behavior of a linear polyethylene with different morphologies was studied by using three point bending with a single edge notched specimen at testing tem-peratures from 30 to 80°C. The morphology was varied by annealing the quenched material at temperatures from 86°C to 135°C. It was found that at test temperatures of 60°C or less, the changes in failure time with annealing temperature are very similar to the change in density with a maximum at 130°C. At testing temperatures above 60°C, the relationship of between failure time and annealing temperature is altered when the test is in the range of the α transition temperature. These results indicate that with respect to slow crack growth in the case of a homopolymer the strength of the crystals is relatively more important than the number of tie molecules. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
We investigated the effects of polymer molecular weight and temperature on Case II transport in the poly(methyl methacrylate)/methanol (PMMA/MeOH) system by a laser interferometric technique, using monodisperse polymer samples. Both the induction process and the steady-state front propagation were investigated. The data gave the volume fraction of MeOH in the swollen layer behind the moving front, ϕ, the steady state front speed, υ, and the characteristic induction time, tind. Values of ϕ separated into two groups, independent of molecular weight within each group. Significantly lower values of ϕ were found for polymers with molecular weight above the critical threshold for entanglement which can be explained by unrelaxed entanglements in the swollen layer. The Case II front velocity was independent of molecular weight for molecular weights at, or above, the critical weight for entanglement, suggesting that anelastic deformation processes other than simple viscous flow control the front propagation. Analysis of induction time data shows that the film surface properties differ from those of the bulk. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3159–3171, 1999  相似文献   

5.
The effect of cold work on the transport of liquid methanol in crosslinked PMMA disks has been determined at temperatures from 35–56°C. Deformed samples absorb at fast rates with kinetics that approach those of Fickian diffusion. Undeformed samples sorb at lower rates and the kinetics tend toward those of Case II transport. Shape recovery accompanied swelling in deformed samples. Samples saturated with methanol were desorbed in cyclohexanol. Resorption of desorbed samples showed fast rates for both deformed and undeformed samples and matched those of the absorption cycle in deformed samples. An analogy is made between the microstructure due to cold work and due to swelling.  相似文献   

6.
Self‐healable poly(methyl methacrylate) (PMMA) composites were fabricated with embedded glycidyl methacrylate (GMA) encapsulated poly(melamine‐formaldehyde) microcapsules. The matrix polymers were synthesized via Atom Transfer Radical Polymerization using two different initiators; one linear and another hexafunctional. As the so prepared polymer matrix retains living characteristics, it can initiate a healing reaction when the encapsulated monomer reaches the matrix due to formation or extension of a crack and thus healing the system covalently. The effect of number of initiating functionality on healing characteristic was studied using both linear and 6‐armed star PMMA having same targeted molecular weight. Both the systems were able to restore 100% original fracture toughness after healing. However, the polymer matrix prepared by hexafunctional initiator restored the fracture toughness much faster than that of the linear polymer matrix. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1842–1851  相似文献   

7.
Gas transport and thermodynamic properties for the blends of polycarbonate (PC) and polymethylmethacrylate (PMMA) were studied. To explore glass transition temperatures of blends and their phase separation temperatures due to a lower critical solution temperature, LCST, a type of phase boundary, transparent blend films that are miscible and do not contain solvent-induced PC crystals were prepared by controlling molecular weights of each component. The average value of interaction energy densities between PC and PMMA obtained from the phase boundaries and the equation of a state theory based on the lattice fluid model was 0.04 cal/cm3. This result confirmed that miscibility of PC and PMMA blends at equilibrium depends upon the molecular weights of components. Gas transport properties of miscible blends and immiscible blends having the same chemical components and composition but a difference in morphology were examined at 35°C and 1 atm for the gases N2 and O2. Permeability and apparent diffusion coefficients were ranked in the order of the immiscible blend having a domain–matrix structure > the immiscible blend having an interconnected structure > the miscible blend. These results might be related to the differences in the local chain motions that depend on the intermolecular mixing level. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2950–2959, 1999  相似文献   

8.
测定了有机玻璃的抗裂纹增长因子K_(1C)与材料组份、拉力机夹头速度的关系。发现增塑剂和交联剂对抗裂纹性能的影响,可从聚合物分子运动能力对裂纹端点塑性屈服过程的影响说明。在对断面形态、断面层厚度、折光指数以及K_(1C)值与拉力机夹头速度关系研究之后,认为用“撕布”模式和次级断裂模式分别解释慢裂纹、快裂纹扩展过程中的实验现象是合适的。  相似文献   

9.
A mathematical model was developed to explain the anomalous penetrant diffusion behavior in glassy polymers. The model equations were derived by using the linear irreversible thermodynamics theory and the kinematic relations in continuum mechanics, showing the coupling between the polymer mechanical behavior and penetrant transport. The Maxwell model was used as the stress–strain constitutive equation, from which the polymer relaxation time was defined. An integral sorption Deborah number was proposed as the ratio of the characteristic relaxation time in the glassy region to the characteristic diffusion time in the swollen region. With this definition, an integral sorption process was characterized by a single Deborah number and the controlling mechanism was identified in terms of the value of the Deborah number. The model equations were two coupled nonlinear differential equations. A finite difference method was developed for solving the model equations. Numerical simulation of integral sorption of penetrants in glassy polymers was performed. The simulation results show that (1) the present model can predict Case II transport behavior as well as the transition from Case II to Fickian diffusion and (2) the integral sorption Deborah number is a major parameter affecting the transition. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The creep crack growth (CCG) and the fatigue crack growth (FCG) behavior of a commercial pipe grade PVC material was studied based on a linear elastic fracture mechanics (LEFM) methodology. The FCG tests were performed under sinusoidal load control at a frequency of 5 Hz and at R-ratios (Fmin/Fmax) of 0.1, 0.3 and 0.5; the test temperatures were 23°C and 60°C. The creep crack growth behavior (corresponding to R = 1) was studied at a test temperature of 60°C. The results of the FCG tests revealed that fatigue crack propagation is primarily controlled by the cyclic component of the crack tip stress field rather than by the mean stress level. Comparing FCG and CCG data in terms of KImax and KI, respectively, also confirmed the deteriorating effect of the fatigue loading on the crack growth resistance. Fracture surface investigations for both fatigue and static loading were performed to gain insight into the micromechanisms of crack advance.  相似文献   

11.
采用熔融共混方法制备了聚左旋乳酸(PLLA)和超高分子量聚氧化乙烯(PEO)共混物, 通过差示扫描量热(DSC)、 扫描电子显微镜(SEM)和二维广角X射线散射(2D-WAXS)等方法系统研究了PEO的加入对不同温度下PLLA拉伸行为及拉伸过程中微观结构变化的影响. 结果表明, PLLA/PEO共混物为非均相体系, PEO粒子均匀分布在PLLA中形成两相结构. PEO的加入能够显著降低PLLA的玻璃化转变温度(Tg), 在25~60 ℃范围内显著提高PLLA的拉伸性能. 在60 ℃拉伸时, PEO的加入提高了PLLA在拉伸过程中的结晶和形变能力. 在80 ℃拉伸时, 共混物的拉伸断裂伸长率下降, 但共混物的结晶速度仍高于纯PLLA样品.  相似文献   

12.
Self‐healing cyanate ester resins (CE) were developed by adding low molecular weight poly(phenylene oxide) (PPO) resin, yielding a high performance CE/PPO system via a low‐temperature process. The addition of PPO improved the flexural strength and fracture toughness of the CE matrix without sacrificing thermal properties. CE/PPO formulations with 5, 10, and 15 wt.% PPO showed 43%, 65%, and 105% increase in fracture toughness due to a combination of crack deflection, crack pinning, and matrix cavitation around second‐phase particles. When PPO was introduced into the CE, dielectric properties were either unchanged or declined. During thermal treatment to heal damaged CE, liquid PPO flowed into cracks, and during subsequent cooling, solidified to bond the crack surfaces. The self‐healing efficiency for CE with 15 wt.% PPO after heating to 220°C for 1 h exhibited a recovery of 73% in toughness and 81% in microtensile strength. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A new approach of mimicking the selective localization mechanism of conductive filler into one phase of immiscible polymer blend system is proposed here, where a moderate fine of polymethylmethacrylate (PMMA) powder is prepared and used as the spacer in the carbon black (CB) filled epoxy adhesives system that can be applied at room temperature. The main purpose of PMMA‐spacer is to promote the formation of conductive networks via aiding the 3D self‐assembly of CB filler, selectively in the continuous phase of epoxy. PMMA‐spacer content ranged from 10, 20, 30, 40, and 50 vol.% were investigated under electrical, mechanical, and thermal properties for both unfilled and 15 vol.% CB filled system. With the incorporation of 10 vol.% PMMA‐spacer, the filled system shows promising improvement in electrical conductivity, with three order of magnitude increment at 15 vol.% CB loading. Toughening mechanism of epoxy was observed, where crack deflection upon the PMMA‐spacer is observed under scanning electron microscopy characterization and agreed by fracture toughness calculation. Thermal stability and coefficient of thermal expansion were improved at the minimum addition of PMMA‐spacer content, at 10 vol.%, while a small reduction in flexural strength is observed because of the poor interface interaction between the PMMA‐spacer and epoxy matrix. Interestingly, a limited interaction between the PMMA‐spacer with epoxy at the curing temperature of 100°C is observed, indicating the solubility of PMMA‐spacer in epoxy before crosslinking process occurred. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Dynamic fracture behavior of polymer PMMA thin plates with three- and four-parallel edge cracks was studied by means of the method of caustics in combination with a high-speed Schardin camera. A series of dynamic caustic patterns surrounding the crack tip and fracture path of the specimen were recorded simultaneously by two types of focused images. Some dynamic fracture parameters such as the dynamic stress intensity factor, crack velocity and acceleration were determined. The evolution of dynamic stress intensity factors on the parallel edge cracks, due to the dynamic unloading effect, was analyzed from the viewpoint of the release of elastic strain energy.  相似文献   

15.
Transparent Interpenetrating Polymer Networks (IPNs) with poly(methyl methacrylate) (PMMA) as the stiff phase and polyurethane (PU) as the ductile phase with varying PMMA:PU ratios in the range of 90:10 to 70:30 were formulated. Static tensile and fracture tests indicate significant failure strain and crack initiation toughness enhancements with a loss of stiffness relative to PMMA. Dynamic fracture tests were conducted using a long-bar impact loading apparatus in conjunction with an optical method and high-speed photography. Low-velocity impact tests were also performed using a drop-tower. Dynamic fracture and low-velocity impact responses show that an optimum range of PMMA:PU ratios in the IPNs can produce enhanced fracture toughness and impact energy absorption capability when compared to PMMA. Fractographic examination supports macro-measurements by showing a distinct change in surface morphology associated with improved macroscale fracture toughness.  相似文献   

16.
Rigid–rigid blends made of ionomer and ionomer precursor polymer, based on poly(methyl methacrylate) (PMMA), have been investigated. Two series of blends have been prepared for studying mechanical properties. In one series, dynamic mechanical properties were determined over a wide range of temperatures. As the weight fraction of the ionomer was increased, there was a modest increase of modulus at ambient temperature and a very large increase in the rubbery modulus at elevated temperatures above the glass transition temperature of PMMA. In a second series of tests, tensile stress–strain measurements, made at an ambient temperature, were carried out over a wide range of blend compositions. For all blends tested, the mechanical properties exhibited a synergistic enhancement, i.e., average values of modulus, strength and fracture energy were all higher than expected based on the rule of mixtures. Measurements of fracture toughness also exhibited synergy, with a maximum value, higher than the value of either blend component, being attained in blends containing about 30 wt % of the PMMA ionomer. These results are interpreted in terms of a higher resistance to fracture of the more chain-entangled ionomer phase and good interfacial adhesion between the two components of the blend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1235–1245, 1998  相似文献   

17.
Alternating multilayered (16, 32, and 128 layers) polypropylene/poly(ethylene-co-octene) (PP/POE) sheets were prepared via multilayer co-extrusion. Impact (−20°C), tensile, and dynamic rheological tests were carried out on the prepared multilayered samples. The toughening mechanism for the multilayered samples was revealed via investigating their fracture surface morphology and analyzing the work of fracture. The results showed that the impact energy for the notched multilayered samples is mainly absorbed by the continuous thin ductile POE layers due to cavitation, whereas for the unnotched multilayered samples the continuous thin POE and PP layers both contributed significantly to the total work of fracture due to multiple crazing, cracking and distinct plastic deformation in both PP and POE layers, and thus significantly extended crack propagation paths. Hence, the multilayered samples possessed much higher unnotched impact strength than notched impact strength. Moreover, the multilayered samples exhibited slightly increased notched impact strength and obviously increased unnotched impact strength with increasing layer number. Interestingly, the multilayered samples exhibited lower notch sensitivity than the PP sample. In addition to significantly improved low temperature impact toughness, the multilayered samples maintained the strength and stiffness as well as having superior extensibility to that of the PP sample.  相似文献   

18.
微孔对HDPE缺口冲击强度及断面形貌特征的影响研究   总被引:1,自引:0,他引:1  
在-196℃~+23℃的温度范围内,系统测试了微孔发泡和未发泡高密聚乙烯(HDPE)的Izod缺口冲击强度,进行了动态粘弹谱(DMA)和冲击断口系统观察分析.根据实验结果,研究了外加冲击力场作用下微发泡高密度聚乙烯变形断裂过程和机理,揭示了微孔的存在导致一定实验温度下的材料变形断裂机制发生了变化,微孔的引入一方面减小了试样(材料)的有效承载面积,另一方面导致HDPE试样芯部基体材料的应力状态改变为平面应力状态,易于在冲击载荷下产生塑性变形或在低温脆断条件下裂纹尖端钝化阻止裂纹扩展,其综合作用的结果导致微孔发泡和未发泡HDPE的Izod缺口冲击强度随实验温度的变化规律存在差异,且实验温度高于-35℃时,微孔发泡HDPE的缺口冲击强度低于未发泡的,实验温度低于-35℃后,微孔发泡HDPE的缺口冲击强度高于未发泡的.  相似文献   

19.
Jian Zhu  Ming He  Feng Qiu 《中国化学》2012,30(7):1399-1404
The Young's modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is demonstrated that the Young's modulus of graphene is largely correlated to the size of vacancy defects perpendicular to the stretching direction. And a linear reduction of Young's modulus with the increasing concentration of mono‐atomic‐vacancy defects (i.e., the slope of ?0.03) is also observed. The fracture behavior of graphene, including the fracture strength, crack initiation and propagation are then studied by the molecular dynamics simulation, the effective spring model, and the quantized fracture mechanics. The blunting effect of vacancy edges is demonstrated, and the characterized crack tip radius of 4.44 Å is observed.  相似文献   

20.
The acetone transport in poly(ethylene terephthalate) (PET) and related phenomena was investigated. Based on Harmon's model for Case I, Case II, and the anomalous transport, we analyzed the data of mass uptake. The diffusivity for Case I and the velocity for Case II satisfied the Arrhenius plot. It was found that the solvent moves from outer surfaces to the center according to Case I kinetics, and there is movement in the opposite direction according to Case II kinetics during the mass uptake. This result indicated that pure Case II behavior did not appear in the PET–acetone system. The saturated amount of acetone in PET satisfied the van't Hoff plot. X-ray diffraction pattern and DSC curve showed solvent-induced crystallites and thermal crystallites. The results of density measurement explained the difference of the sorption kinetics between the acetone-treated PET crystallites and thermally treated PET. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 163–169, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号