首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Solid polymer electrolytes for Lithium batteries applications are commonly prepared by dissolving a lithium salt in poly(ethylene oxide) (PEO)‐based materials. Their performance is strongly related to the structure of the polymer network. In this article, a new salt‐in‐polymer electrolyte prepared by the fast and easy radical photopolymerization of PEO acrylate oligomers is studied. Here, a difunctional monomer used as the polymer backbone is copolymerized with monofunctional monomers of different length and concentration. Thus, the crosslinking density and conductivity are changed. These systems are investigated by a detailed NMR study yielding local dynamics and mass transport by temperature‐dependent spin‐lattice relaxation time and PFG‐NMR diffusion measurements for different nuclei (7Li and 19F). The results indicate that a sufficiently long monofunctional oligoether improves the properties, since it provides a lower crosslinking density as well as more coordinating oxygens for the Li ions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1571–1580  相似文献   

2.
硅氧烷基聚合物电解质*   总被引:1,自引:0,他引:1  
聚合物锂离子电池的核心技术是研制高离子传导率、适宜机械性能以及化学和电化学性能稳定的聚合物电解质材料。在众多寻求高性能聚合物电解质的研究工作中,由于硅氧烷基聚合物电解质具有灵活多样的分子结构设计、易于合成实施、优异的电化学性能和室温电导率等特点,一直是人们关注的热点领域。本文综述了近年来新型硅氧烷基聚合物电解质的设计与合成的研究工作,重点介绍了采用聚硅氧烷嵌段、接枝聚合物通过共混、互穿网络结构、交联网络结构以及无机-有机复合等方法开展的相关聚合物电解质的研究工作。同时也介绍了聚硅氧烷电解质的研究方法和基于聚硅氧烷电解质的应用研究进展。  相似文献   

3.
To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10?5 S cm?1 at 30°C; 1.1 × 10?4 S cm?1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10?5 S cm?1 at 30°C; 4.0 × 10?4 S cm?1 at 60°C).  相似文献   

4.
Five ionic imidazolium based monomers, namely 1‐vinyl‐3‐ethylimidazolium bis(trifluoromethylsulfonyl)imide (ILM1), 1‐vinyl‐3‐(diethoxyphosphinyl)‐propylimidazolium bis(trifluoromethylsulfonyl)imide (ILM2), 1‐[2‐(2‐methyl‐acryloyloxy)‐propyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM3), 1‐[2‐(2‐methyl‐acryloyloxy)‐undecyl]‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (ILM4), 1‐vinyl‐3‐ethylimidazolium dicyanamide (ILM5) were prepared and used for the synthesis of linear polymeric ionic liquids (PILs), crosslinked networks with polyethyleneglycol dimethacrylate (PEGDM) and interpenetrating polymer networks (IPNs) based on polybutadiene (PB). The ionic conductivities of IPNs prepared using an in situ strategy were found to depend on the ILM nature, Tg and the ratio of the other components. Novel ionic IPNs are characterized by increased flexibility, small swelling ability in ionic liquids (ILs) along with high conductivity and preservation of mechanical stability even in a swollen state. The maximum conductivity for a pure IPN was equal to 3.6 × 10?5 S/cm at 20 °C while for IPN swollen in [1‐Me‐3‐Etim] (CN)2N σ reached 8.5 × 10?3 S/cm at 20 °C or 1.4 × 10?2 S/cm at 50 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4245–4266, 2009  相似文献   

5.
A new dual-phase solid polymer electrolyte system has been proposed. In this system, a network of ion pathways is formed in a low-polarity, host polymer matrix. A series of electrolytes were prepared from styrene-butadiene copolymer latices with dissolved lithium salts. Polymer films were formed from these latices, and then impregnated with γ-butyrolactone (γ-BL) or γ-butyrolactone/dimethoxyethane mixture (γ-BL/DME), giving latex polymer electrolytes. The ionic conductivity of the polymer electrolyte system increased with increasing solvent content, although a distinct percolation threshold was not measured. Ionic conductivity also increased with the use of DME cosolvent, with the highest conductivity being 1.4 × 10?4S/cm. Complex impedance diagrams are discussed. The diagrams show significant deviations from the ideal. TEM/SEM observations are consistent with the desired dual-phase morphology. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Solid polymer electrolytes (SPE) have been identified as a class of materials which could enable the fabrication of high energy density solid state lithium rechargeable batteries which could meet the performance requirements for advanced portable electronic and automotive applications. In order to achieve this goal, novel SPE systems having high ionic conductivity and good mechanical properties at or near ambient temperature must be developed. Novel lithium salts believed to be useful in realizing this objective have recently been proposed. The thermal behavior of SPE systems based on high molecular weight poly(ethylene oxide) (PEO) and on two novel salts, the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the lithium tris(trifluoromethylsulfonyl)-methanide (LiTSFM) is reported and compared with the thermal behavior of the high molecular weight PEO–lithium trifluoromethane sulfonate (LiTFLT) SPE system. Phase diagrams for the PEO–LiTFSI and PEO–LiTFSM SPE systems have been established and are discussed in terms of their impact on SPE-based rechargeable lithium battery technologies. The use of a novel plasticizer in conjunction with the PEO–LiTFSI-based SPE system is reported and it is shown how this modifies the thermal behavior of the PEO–LiTFSI SPE system.  相似文献   

7.
Conductivities for a wide variety of ionically conducting polymer electrolytes with a range of salt compositions have been investigated over the temperature region Tg to 370 K. When the conductivity data are analyzed as a function of temperature using the empirical Vogel-Tammann-Fulcher (VTF) equation a common trend is observed in that deviations in the fits to the data invariably occur in the temperature range 1.2 Tg to 1.4 Tg for all of the samples investigated. This deviation is interpreted as a decoupling of the ions from polymer segmental motion. Recent 23Na NMR and 22Na positron annihilation studies of sodium salt-based polymer electrolytes support this interpretation with evidence of a change in dynamics at about 1.2Tg. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this work, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X‐ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition that is responsible for the diminishment of both PVDF and PEO crystallites. A three‐fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room‐temperature ion conductivities and mechanical flexibility. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1450–1457  相似文献   

9.
Solid polymer electrolytes (SPEs) are compounds of great interest as safe and flexible alternative ionics materials, particularly suitable for energy storage devices. We study an unusual dependence on the salt concentration of the ionic conductivity in an SPE system based on poly(ethylene carbonate) (PEC). Dielectric relaxation spectroscopy reveals that the ionic conductivity of PEC/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte continues to increase with increasing salt concentration because the segmental motion of the polymer chains is enhanced by the plasticizing effect of the imide anion. Fourier transfer‐infrared (FTIR) spectroscopy suggests that this unusual phenomenon arises because of a relatively loose coordination structure having moderately aggregated ions, in contrast to polyether‐based systems. Comparative FTIR study against PEC/lithium perchlorate (LiClO4) electrolytes suggests that weak ionic interaction between Li and TFSI ions is also important. Highly concentrated electrolytes with both reasonable conductivity and high lithium transference number (t+) can be obtained in the PEC/LiTFSI system as a result of the unusual salt concentration dependence of the conductivity and the ionic solvation structure. The resulting concentrated PEC/LiTFSI electrolytes have extraordinary oxidation stability and prevent any Al corrosion reaction in a cyclic voltammetry. These are inherent effects of the highly concentrated salt. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2442–2447  相似文献   

10.
Ceramic fast-ion conductors have high ionic conductivities (>10?4 S cm?1) but are difficult to process and have poor chemo/mechanical properties at the electrode/electrolyte interfaces. In contrast, polymer electrolytes are pliable and easy to process but suffer from low room-temperature ionic conductivities (≈10?6-10?7 S cm?1). Combining these two elements to form a composite polymer electrolyte is a promising way to enable all-solid-state lithium-metal batteries. The choice of ceramic filler and polymer can be tailored to provide synergistic benefits that overcome the practical shortcomings of the two components. Herein, the fundamentals of Li+ conduction through the various phases and interfaces in these materials are discussed as well as the important parameters, beyond the initial choice of polymer and ceramic filler materials that must be considered while designing composite polymer electrolytes. Emphasis is placed on the particle filler engineering and practical fabrication methods as routes toward enhancing the properties of these composites.  相似文献   

11.
The majority of investigations carried out on polymer(SINGLEBOND) salt systems have been on polyether electrolytes at moderate temperatures where such electrolytes exhibit macroscopic uniformity. Relatively little attention has been paid to the subambient temperature region where composite electrolytes based on polyethers exhibit much higher conductivities than their pure polyether electrolyte analogues. For all of the composite systems studied the conduction mechanism changes from one in which the ions are coupled to the polymer segmental relaxations to one in which the ions are decoupled and thermally activated ionic hopping produces higher conductivities than would be expected from ion-segmental coupling and higher than observed for the base polyether(SINGLEBOND) salt system. This change has been observed at temperatures between 10 and 80°C above the respective glass transition temperatures. The relationship between this interaction and these higher conductivities at subambient temperatures is explored and discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Studies on solid polymer electrolyte systems based on semi-interpenetrating polymer networks of poly(ethylene oxide)-polyurethane and poly(acrylonitrile) (PEO-PU/PAN) doped with lithium trifluoromethanesulfonate (LiCF3SO3) is reported. Room temperature FT-IR analysis indicates a salt solvation process that occurs predominantly in the polyether segments of the semi-IPNs and incorporation of salt is also seen to favor a morphological change in the matrix with a transition from semi-crystalline to amorphous phase. From the relative band areas a critical concentration (Cc) of salt can be identified where concentration of ionic species, morphology and amount of transient crosslinks is optimal to impart maximum conductivity, which is in agreement with the room temperature conductivity results. Thermal analysis of the semi-IPN lends further support to this observation. The temperature dependence of conductivity is found to follow the Arrhenius behavior at low temperatures (∼ upto 328 K) and VTF dependence at higher temperatures. This crossover in temperature dependent conductivity is attributed to the change in the phase morphology of the semi-IPNs beyond the crystalline melting temperature (Tm1) of the polyether segments.  相似文献   

13.
Polysiloxanes with covalently attached oligo ethylene oxide and di-t-butylphenol ( I ), naphthol ( II ), and hexafluoropropanol ( III ) were synthesized. The crosslinked polymers with a hexamethylene spacer were also prepared. The ion conductivities of the Li, Na, and K salts were measured as a function of temperature. The highest conductivities for K and Na of I at 30°C were 5.5 × 10?5 and 5.0 × 10?5 S/cm, respectively, when the ratio of the ion to ethylene oxide unit was 0.014. On the other hand, Li conductivity was 8.0 × 10?6 S/cm when the ratio between Li and ethylene oxide unit was 0.019. The maximum conductivities of Li ions of II and III were in the order of 10?6 and 10?7 S/cm at 30°C, respectively. When the polymers were crosslinked by a hexamethylene residue, the ion conductivities decreased while the degree of crosslinking increased. The temperature dependence of the cation conductivities of these systems could be described by the Williams-Landel-Ferry (WLF) and the Vogel-Tammann-Fulcher (VTF) equation. The results demonstrate that ion movement in these polymers is correlated with the polymer segmental motion. The order of ionic conductivity was K+ > Na+ ? Li+. This suggests that steric hindrance and π-electron delocalization of the anions attached to polymer backbone have a large effect on ion-pair separation and their ionic conductivities. Thermogravimetric analysis of the polymers indicated that the degradation temperature for I and II were about 100°C higher than for poly(siloxane-g-ethylene oxide). This is due to the antioxidant properties of sterically hindered phenols and naphthols. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Polymer electrolyte (PE) has been emerging as a promising alternative to liquid electrolytes due to the unique advantages such as excellent flexibility and processability, high chemical and thermal stability, and low risk of leakage and combustion, especially for lithium-ion batteries (LIBs). Even though abundant attempts focusing on polymer chemistries have been made, the inadequate capacity of lithium-ion transport via segmental motion still cannot provide satisfying room temperature ionic conductivity and lithium-ion transference number. In addition, safety concerns and short lifespan resulted from the brittle and incompatible interface between the electrode and polymer materials also hinder the commercialization of PEs-based LIBs. Hence, for the above performance defects and interface issues, this review provides an overview of polymer electrolytes from the conductivity improvement, polymer selection and mechanical strength enhancement for protrusion suppressing. The improvement of conductivity specifically includes structure modification of poly(ethylene oxide) (PEO) host and novel electrolyte matrix beyond PEO, while the section of interface regulation mainly involves dendrite-inhibited polymers, mechanical strengthening, and in situ polymerization. Finally, perspectives and challenges are pointed out in the development of polymer electrolytes with both excellent electrochemical performance and safety for LIBs.  相似文献   

15.
New solid polymer electrolytes are developed for a lithium power source used at the temperatures up to 100°C. Polyester diacrylate (PEDA) based on oligohydroxyethylacrylate and its block copolymers with polyethylene glycol were offered for polymer matrix formation. The salt used was LiClO4. The ionic conductivity of electrolytes was measured in the range of 20 to 100°C using the electrochemical impedance method. It is shown that the maximum conductivity in the whole temperature range is characteristic of the electrolyte based on the PEDA copolymer and polyethylene glycol condensation product (2.8 × 10?6 S cm?1 at 20°C, 1.8 × 10?4 S cm?1 at 95°C).  相似文献   

16.
Solid polymer electrolytes are a promising alternative to widely used liquid carbonate electrolytes to deliver next-generation lithium-ion batteries with improved safety. However, the limited ionic conductivity and high interfacial resistance with electrodes limit their widespread use. This review aims to give an overview of the recent research on performance aspects and strategies of solid polymer electrolytes, including ionic conductivity, lithium transference number, design flexibility, scale-up, and integration of ionic liquids with a focus on safety.  相似文献   

17.
Magic-angle-spinning (MAS) enhances sensitivity and resolution in solid-state nuclear magnetic resonance (NMR) measurements. MAS is obtained by aerodynamic levitation and drive of a rotor, which results in large centrifugal forces that may affect the physical state of soft materials, such as polymers, and subsequent solid-state NMR measurements. Here, we investigate the effects of MAS on the solid-state NMR measurements of a polymer electrolyte for lithium-ion battery applications, poly(ethylene oxide) (PEO) doped with the lithium salt LiTFSI. We show that MAS induces local chain ordering, which manifests itself as characteristic lineshapes with doublet-like splittings in subsequent solid-state 1 H, 7 Li, and 19 F static NMR spectra characterizing the PEO chains and solvated ions. MAS results in distributions of stresses and hence local chain orientations within the rotor, yielding distributions in the local magnetic susceptibility tensor that give rise to the observed NMR anisotropy and lineshapes. The effects of MAS were investigated on solid-state 7 Li and 19 F pulsed-field-gradient (PFG) diffusion and 7Li longitudinal relaxation NMR measurements. Activation energies for ion diffusion were affected modestly by MAS. 7Li longitudinal relaxation rates, which are sensitive to lithium-ion dynamics in the nanosecond regime, were essentially unchanged by MAS. We recommend that NMR researchers studying soft polymeric materials use only the spin rates necessary to achieve the desired enhancements in sensitivity and resolution, as well as acquire static NMR spectra after MAS experiments to reveal any signs of stress-induced local ordering.  相似文献   

18.
Plasticized polymer electrolytes composed of chitosan as the host polymer, oleic acid (OA) as the plasticizer and lithium acetate (LiOAc) as the doping salt were prepared by the solution cast technique. These complexes with different amounts of salts and plasticizers were investigated as possible ionic conducting polymers. The highest ionic conductivity of the plasticized chitosan-LiOAc was ∼10−5 S cm−1 for the film containing 40.0 wt.% LiOAc and 10.0 wt.% of OA. Conductivity for the plasticized LiOAc-doped chitosan polymer was also studied as a function of temperature between 300 and 363 K. The plot of ln(σT) versus 103/T for each sample obeys Arrhenius rule indicating the conductivity to be thermally assisted. XRD and FTIR spectroscopy techniques have been used for the structural studies.  相似文献   

19.
New segmented polyurethanes with perfluoropolyether (PFPE) and poly(ethylene oxide) blocks were synthesized from a fluorinated macrodiol mixed with poly(ethylene glycol) (PEG) in different ratios as a soft segment, 2,4‐toluene diisocyanate as a hard segment, and ethylene glycol as a chain extender. Fourier transform infrared, NMR, and thermal analysis [differential scanning calorimetry and thermogravimetric analysis (TGA)] were used to characterize the structures of these copolymers. The copolymer films were immersed in a liquid electrolyte (1 M LiClO4/propylene carbonate) to form gel‐type electrolytes. The ionic conductivities of these polymer electrolytes were investigated through changes in the copolymer composition and content of the liquid electrolyte. The relative molar ratio of PFPE and PEG in the copolymer played an important role in the conductivity and the capacity to retain the liquid electrolyte solution. The copolymer with a 50/50 PFPE/PEG ratio, having the lowest decomposition temperature shown by TGA, exhibited the highest ionic conductivity and lowest activation energy for ion transportation. The conductivities of these systems were about 10?3 S cm?1 at room temperature and 10?2 S cm?1 at 70 °C; the films immersed in the liquid electrolyte with an increase of 70 wt % were homogenous with good mechanical properties. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 486–495, 2002; DOI 10.1002/pola.10119  相似文献   

20.
Polyethylene oxide (PEO) oligomers can dissolve lanthanide salts. The terminal hydroxyl groups of PEO affect the solubility of the lanthanide salts in the PEO considerably. However, no intensive fluorescence was observed from Eu3+ dispersed in PEO or other ion-conductive polymers containing terminal hydroxyl groups, because of the quenching effect of the terminal hydroxyl groups. Copolymer of ω-methoxy oligo(oxyethylene) methacrylate and methyl methacrylate (P(MEOM-co-MMA)) could dissolve small amount of Eu(NO3)3, but the copolymer film containing Eu3+ shows intensive fluorescence (Ex = 269.0 nm, Em = 570.0 nm). This was prepared as a soft film, and there was a clear dependence of the Eu3+ concentration on the fluorescence intensity. A linear relation between the film thickness and the fluorescence intensity was also observed. Little fluorescence was found for Eu3+ in the blend of the corresponding two homopolymers, i.e. poly-(ω-methoxy oligo (oxyethylene) methacrylate) (PMEOM) and poly(α-methyl methacrylate) (PMMA). This strongly suggests that intensive fluorescence requires a mixed state of MEOM and MMA units at molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号