首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gas Phase Structure of CF3NCl2 and Preparation of CF3NCl2F+MF6? (M = As, Sb) and CF2 = NCl2F+SbF6? The gas phase structure of CF3NCl2 is reported. The following skeletal parameters are derived (ra-values, error limits are 3σ values): N? C = 1.470(6) Å, N? Cl = 1.733(3) Å, ClNCl = 111.5(4)° and ClNC = 107.6(5)°. CF3NCl2F+MF6? is prepared by fluorination of CF3NCl2 with XeF+MF6?. The same educt CF3NCl2 reacts with XeF+SbF6? at ?40°C to CF2 = NClF+SbF6? under elimination of ClF.  相似文献   

3.
On the Crystal Structures of CH3PF2H+AsF6? and CH3PF2H+SbF6? and a simple Method for Preparation of CH3PF2 A simple method for preparation of CH3PF2 from CH3PCl2 is reported. The phosphonium salts CH3PF2H+MF6? are obtained by the reaction of CH3PCl2 with superacidic systems HF/MF5 (M = As, Sb). CH3PF2H+SbF6? crystallizes in the space group P1 with a = 548.4(4) pm, b = 695.5(8) pm, c = 960.2(9) pm, α = 94.68(5)°, β = 97.19(6)°, γ = 94.41(6)° and Z = 2. CH3PF2H+SbF6? crystallizes in P1 with a = 554.3(3), b = 724.2(4), c = 970.4(5), α = 94.73(4)°, β = 96.14(5)°, γ = 95.30(4)°.  相似文献   

4.
Preparation of (C6F5)2SF+MF6? (M ? As, Sb) and Crystal Structure of (C6F5)2SF+SbF6? XeF+MF6? (M ? As, Sb) reacts with (C6F5)2S in HF to form (C6F5)2SF+MF6?. The deeply violet sulfonium salts can be kept without decomposition up to 24 h at room temperature. The hexafluoroantimonate salt crystallizes in the monoclinic space group P21/n with a = 1056.4(7) pm, b = 1446.3(10) pm, c = 1102.9(8) pm, β = 91.29(6)° und Z = 4. The SF-bond distance with 158.4(3) pm is of unusual length. Cations and anions are connected via interionic fluorine contacts to an infinite chain, in which cations and anions form to ABAB sequence along the chain.  相似文献   

5.
The melting diagram of the system (CH3)4NF? HF was studied between 50 and 100 mole-% HF and from ?185°C to the respective liquidus temperatures (at most 162°C) by difference thermal analysis aided by temperature-dependent X-ray powder diffraction. The system was found to be quasi-binary with the HF-rich intermediary stable compounds (CH3)4NF · 2 HF (melting point 110°C), (CH3)4NF · 3 HF (20°C, decomposition), (CH3)4NF · 5 HF (?76°C, decomposition), and (CH3)4NF · 7 HF (?110°C, decomposition), most of which undergo solid-solid phase transitions. Crystal structures were determined of the low-temperature form of (CH3)4NF · 2 HF (stable below 83°C, orthorhombic, space group Pbca, Z = 8 formula units per unit cell), the high-temperature form of (CH3)4NF · 3 HF (stable above ?87°C, monoclinic, P2/c, Z = 4), and of (CH3)4NF · 5 HF (tetragonal, I4 , Z = 2). The structures are those of poly(hydrogen fluorides) (CH3)4N[HnFn+1] with homologous anions [H2F3]?, [H3F4]?, and [H5F6]?, respectively, formed by strong hydrogen bonding F? H…?F. The anion [H5F6]? is the first one of this composition established by crystal structure analysis. Its structure can be written as [(FH)2FHF(HF)2]? with four equivalent terminal hydrogen bonds of 248.4 pm and a very short central one of 226.6 pm (F…?F distances) through a 4 point of the space group.  相似文献   

6.
Preparation, Spectroscopic Characterization, and Crystal Structure of (CF3)2C(F)OH2+Sb2F11 Hexafluoroacetone, (CF3)2CO, reacts at –78 °C with the superacid HF/SbF5 under formation of the primary oxonium salt, (CF3)2C(F)OH2+Sb2F11, which is characterized by vibrational spectroscopy and NMR spectra. The salt crystallizes in the triclinic space group P1 with a = 817.9(1), b = 989.0(1), c = 1003.8(1) pm and 2 formula units per unit cell.  相似文献   

7.
Preparation of μ-Sulfurdisulfonium Salts [(CH3)2S? Sx? S(CH3)2]2+2A? (x = 1–3, A? = AsF6?, SbF6?, SbCl6?). On the Analogy of the Reactivity of Sulfanes and Sulfonium Salts The preparation of the μ-sulfurdisulfonium salts [(CH3)2S? Sx? S(CH3)2]2+(A?)2 with x = 1–3 and A? = AsF6?, SbF6?, SbCl6? is reported. The salts are formed by reaction of (CH3)2SH+A? and (CH3)2SSH+A? with SCl2 and S2Cl2, resp. They are characterized by vibrational spectroscopic measurements. [(CH3)2S? S2? S(CH3)2]2+(SbF6?)2 crystallizes in the space group C2/c with a = 1 884.5(7) pm, b = 1 302.8(5) pm, c = 1 477.2(5) pm, β = 98.62(3)° und Z = 8.  相似文献   

8.
Crystal structure of AgIIF[AgIIIF4] For the first time dark brown single crystals of mixedvalent AgF[AgF4] were isolated under solvothermal conditions out of anhydrous HF/F2. The compound crystallizes in a new type of structure, triclinic with a = 499.9(2) pm, b = 1108.7(5) pm, c = 735.7(3) pm, α = 90.05(3)°, β = 106.54(4)°, γ = 90.18(4)°, spcgr. P1¯ — Ci1 (No. 2) and Z = 4.  相似文献   

9.
Crystal Structure and Raman Spectrum of SbCl3 · S8 Contrary to literature data, the reaction of SbCl5 with CS2 at 5°C does not yield SbSCl3 but SbCl3 · S8. At room temperature it already decomposes slowly to SbCl3 and sulphur. The crystalline compound is built up from pyramidal SbCl3 molecules and S8 rings; pairs of SbCl3 molecules form loosely associated dimeric units, furthermore there exist some relatively short Sb…?S contact distances. SbCl3 · S8 crystallizes in the space group P1 with the lattice constants a = 805, b = 867, c = 1073 pm, α = 94.9, β = 107.1 und γ = 111.6° (bei ?5°C). The crystal structure was determined with 2032 X-ray reflexions and was refined to a residual index of R = 0.028. The Raman spectrum is reported.  相似文献   

10.
AuF3 is reduced in superacidic HF/SbF5 solutions giving three products. 1. Orange [Au3F8·2SbF5]. It has a layered structure built up by square planar AuIIF4 and AuIIIF4 units: Crystal structure: space group P21/c, a = 9.049(2), b = 8.424(1), c = 9.645(1)Å, β = 115.08(1)°. 2. Black [Au3F7·3SbF5] has a ribbon structure, similarly built up by square planar AuIIF4 and AuIIIF4 units: Crystal structure: space group Pc, a = 9.991(1), b = 10.728(1), c = 15.222(1)Å, β = 95.304(2)°. 3. Yellow green [(Au(HF)2] (SbF6)2·2HF with square planar AuIIF4 units that are formed by two fluorine atoms of the anions and two HF molecules as complex ligands. Crystal structure: Space group P¯, a = 5.482(1), b = 5.848(1), c = 9.309(2)Å, α = 89.522(4), β = 85.635(4), γ = 87.509(4)°.  相似文献   

11.
[Sb(NPPh3)4]+SbF6?: Synthesis, Crystal Structure, and 121Sb Mössbauer Spectrum The title compound as well as the hexachloro antimonate [Sb(NPPh3)4]+SbCl6? have been prepared by the reaction of Me3SiNPPh3 with SbF5 and SbCl5, respectively, in acetonitrile solutions. The compounds form colourless, moisture sensitive crystals, which were characterized by IR spectroscopy, by 121Sb Mössbauer spectroscopy, and by crystal structure analyses. A complete crystal structure analysis, however, could be carried out with [Sb(NPPh3)4]+SbF6? only. The compound crystallizes orthorhombically in the space group Pccn with four formula units per unit cell. The structure determination was done with 3 972 observed unique reflections, R = 0.053. Lattice dimensions at 19°C: a = 1 658,6; b = 1 698.9, c = 2 361.9 pm. In the cation [Sb(NPPh3)4]+ the antimony atom is tetrahedrally coordinated by the four nitrogen atoms of the phosphoraneiminato ligands with extremely short Sb? N bond lengths of 193 pm.  相似文献   

12.
On 121Sb-Mössbauer Effect. VIII. Vibrational Spectrum and 121Sb-Mössbauer Spectrum of P2O3Cl4 · 2 SbCl5. Crystal Structure of [SbCl4(O2PCl2)]2 The donor-acceptor complex P2O3Cl4 · 2 SbCl5 is prepared from P2O3Cl4 and excess SbCl5 in carbon tetrachloride at ?20°C. According to the vibrational spectrum and the 121Sb-Mössbauer parameters the SbCl5 molecules are bonded to the terminal O atoms of P2O3Cl4. Thermolysis of the adduct yields the dichloro phosphate [SbCl4(O2PCl2)]2 which has been discussed earlier. The crystal structure of the dimer was determined by means of X-ray diffraction; it crystallizes monoclinic in the space group P21/c with two dimeric molecules per unit cell (1843 independent, observed reflexions, R = 4.0%). The cell dimensions are a = 857 pm, b = 1144 pm, c = 1091 pm; β = 108.6°. In the molecule two SbCl4 units are linked by the O atoms of the dichlorophosphate groups to form a centrosymmetric eightmembered ring with chair conformation.  相似文献   

13.
Crystal Structures of SeCl3+SbCl6?, SeBr3+GaBr4?, PCl4+SeCl5?, and (PPh4+)2SeCl42? · 2 CH3CN The crystal structures of the title compounds were determined by X-ray diffraction. SeCl3+SbCl6?: Space group P21/m, Z = 4, structure determination with 1795 observed unique reflections, R = 0.022. Lattice dimensions at ?80°C: a = 940.9, b = 1066.3, c = 1234.9 pm, β = 102.79°. The compound forms ion pairs with the structure of a double octahedron with linked surfaces. SeBr3+GaBr4?: Space group Pc, Z = 2, structure determination with 1461 observed unique reflections, R = 0.058. Lattice dimensions at ?60°C: a = 660.1, b = 655.3, c = 1431.3 pm, β = 101.177°. The compound crystallizes in the SCl3[AlCl4] lattice type. Between the ions there are two relatively short Se … Br? Ga contacts. PCl4+SeCl5?: Space group Ima2, Z = 8, structure determination with 1757 observed unique reflections, R = 0.029. Lattice dimensions at ?50°C: a = 1651.6, b = 1201.2, c = 1166.4 pm. The SeCl5? ions are associated to chains via interionic Se? Cl … Se contacts along the crystallographic c-axis. (PPh4+)2SeCl42? · 2CH3CN: Space group P21/n, Z = 2, structure determination with 2578 observed unique reflections, R = 0.050. Lattice dimensions at ?80°C: a = 1288.5, b = 726.0, c = 2585.8 pm, β = 101.65°. The compound includes planar-tetragonal SeCl42? ions, which almost meet D4h symmetry.  相似文献   

14.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

15.
Phosphorane Iminato Complexes of Antimony. The Crystal Structures of [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN and [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN The title compounds are formed by reaction of antimony pentachloride in acetonitrile solution with the phosphorane iminato complexes SbCl2(NPMe3) and SbCl2(NPPh3), respectively, which themselves are synthesized by reaction of antimony trichloride with Me3SiNPR3 (R = Me, Ph). The complexionic compounds are characterized by 121Sb Mössbauer spectroscopy and by crystal structure determinations. [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN: Space group P41, Z = 4, 3 698 observed unique reflections, R = 0.022. Lattice dimensions at ?60°C: a = b = 1 056.0(1), c = 2 709.6(2) pm. The structure consists of SbCl6? ions and cations [Sb2Cl5(NPMe3)2(CH3CN)]+, in which one SbIII atom and one SbV atom are bridged by the N atoms of the phosphorane iminato ligands. [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN: Space group P1 , Z = 2, 5 958 observed unique reflections, R = 0.033. Lattice dimensions at ?60°C: a = 989.4(11), b = 1 273(1), c = 1 396(1) pm, α = 78.33(7), β = 77.27(8)°, γ = 86.62(8)°. The structure consists of SbCl6? ions and centrosymmetric cations [SbCl(NPPh3)(CH3CN)2]22+, in which the antimony atoms are bridged by the N atoms of the phosphorane iminato ligands.  相似文献   

16.
Preparation, Crystal and Molecular Structure of Triphenylphosphineoxide Hydrogen - fluoride (C6H5)3PO · HF (C6H5)3PO · HF was prepared from hydrofluoric acid (40%) and (C6H5)3PO in benzene. It crystallizes in the monoclinic space group P21/c with a = 1 032.8(3), b = 1 051.0(7), c = 1695.5(2) pm, β = 121.95(2)° and Z = 4; d (calc./obs.) 1.27/1.26 g ° cm?3. The structure was determined by direct methods from 2 709 independent reflections and has been refined by full matrix least squares methods to R = 0.049. In the compound HF and (C6H5)3PO are linked by a short H-bond. Some distances: O? F 238.4(5), O? H 142.3, H? F 99.8, P? O 149.5(4) pm. Angle O? H? F 159.8°.  相似文献   

17.
Crown Ether Complexes of Lead(II). The Crystal Structures of [PbCl(18-Krone-6)][SbCl6], [Pb(18-Krone-6)(CH3CN)3][SbCl6]2 und [Pb(15-Krone-5)2][SbCl6]2 . [PbCl(18-crown-6)][SbCl6] has been prepared in low yield besides [Pb(CH3)2(18-crown-6)][SbCl6]2 by the reaction of Pb(CH3)2Cl2 with antimony pentachloride in acetonitrile solution in the presence of 18-crown-6, forming pale-yellow crystals. The other two title compounds are formed as colourless crystals by the reaction of PbCl2 with antimony pentachloride in acetonitrile solutions in the presence of 18-crown-6 and 15-crown-5, respectively. The complexes were characterized by IR spectroscopy and by crystal structure determinations. [PbCl(18-crown-6)][SbCl6]: Space group P21/c, Z = 8, 5 003 observed unique reflections, R = 0.046. Lattice dimensions at - 80°C: a = 1 386.9; b = 1 642.7; c = 2 172.1 pm, β = 92.95°. The lead atom in the cation [PbCl(18-crown-6)]+ is surrounded in an almost hexagonal-planar construction by the six oxygen atoms of the crown ether and an axially oriented Cl atom. [Pb(18-crown-6)(CH3CN)3][SbCl6]2: Space group P1 , Z = 2, 6 128 observed unique reflections, R = 0.076. Lattice dimensions at - 70°C: a = 1 228.0; b = 1 422.9; c = 1 463.2 pm, α = 69.08°; β = 65.71°; γ = 64.51°. In the cation [Pb(18-crown-6)(CH3CN)3]2+ the lead atom is coordinated by the six oxygen atoms of the crown ether and by the three nitrogen atoms of the acetonitrile molecules. The structure determination is restricted by disorder. [Pb( 15-crown-5)2][SbCI6]2: Space group P63/m, Z = 6, 5 857 observed unique reflections, R = 0.059. Lattice dimensions at -70°C: a = b = 2 198.5; c = 1499.4 pm, α = β = 90°, γ = 120°. In the cation [Pb(l5-crown-5)2]2 the lead atom is sandwich-like coordinated by the ten oxygen atoms of the two crown ether molecules. The structure determination is restricted by disorder.  相似文献   

18.
Synthesis, Crystal Structure, and 121Sb-Mössbauer Spectra of [SbBr3(15-Crown-5)], [SbBr2Me(15-Crown-5)], and [SbBr2Ph(15-Crown-5)] The compounds [SbBr3(15-crown-5)] ( 1 ), [SbBr2Me(15-crown-5)] ( 2 ), [SbBr2Ph(15-crown-5)] ( 3 ), and [SbCl2Me(15-crown-5)] ( 4 ) are formed by the reaction of 15-crown-5 with SbBr3, SbBr2Me, SbBr2Ph, and SbCl2Me, respectively, in toluene solution at ?40°C. The complexes were characterized by IR spectroscopy, 121Sb-Mössbauer spectroscopy, 1–3 as well as by X-ray structure determinations.
  • 1 : Space group P212121, Z = 4, 1735 observed, independent reflections, R = 0.050, Lattice dimensions at ?65°C: a = 787.03(7); b = 1313.0(2); c = 1619.3(2) pm.
  • 2 : Space group Pca21, Z = 8, 2730 observed, independent reflections, R = 0.050, Lattice dimensions at ?65°C: a = 1308.2(2); b = 1611.8(2); c = 1640.5(3) pm.
  • 3 : Space group P21/n, Z = 4,2458 observed, independent reflections, R = 0.040, Lattice dimensions at ?60°C: a = 900.3(3); b = 1390.6(6); c = 1618.5(7) pm, β = 96.32(3)°.
The complexes 1–3 have molecular structures, in which the antimony atoms are surrounded by the five oxygen atoms of the crown ether molecule and by three ligands Br3, Br2CH3, Br2Ph, respectively.  相似文献   

19.
Vibrational Spectra of Trimethylphosphonium Cations (CH3)3PX+ (X = H, D) and Crystal Structures of (CH3)3PD+SbCl6? and (CH3)3PCl+SbCl6? The trimethylphosphonium salts (CH3)3PX+SbCl6? (X = H, D) and (CH3)3PH+MF6? (M = As, Sb) are prepared and characterized by vibrational and NMR spectroscopy (1H, 31P, 13C). In addition the crystal structures of (CH3)3PD+SbCl6? and (CH3)3PCl+SbCl6? are reported. (CH3)3PD+SbCl6? crystallizes in the orthorhombic space group Pnma with a = 1555(1) pm, b = 753.1(8) pm, c = 1166(1) pm Z = 4. (CH3)3PCl+SbCl6? crystallizes triclinic in the space group P1 with a = 704.6(4) pm, b = 729.5(3) pm, c = 1391.1(7) pm, α = 89.57(4)°, b? = 88.04(4)°, γ = 74.98(4)° and Z = 2.  相似文献   

20.
Reaction of Diphenylfluorophosphane with Aldehydes. Crystal Structure of [α-(Difluorodiphenyl-λ5-phosphanyl)] Piperonyl Diphenylphosphinite Diphenylfluorophosphane, Ph2PF, reacts with aldehydes forming phosphinito phosphoranes, Ph2F2P? CHR? O? PPh2. [α-(Difluorodiphenyl-λ5-phosphanyl)] piperonyl diphenyl-phosphinite, obtained by the reaction of Ph2PF with piperonal, crystallizes in the triclinic space group P1 with a = 969.3 pm, b = 2360 pm, c = 607,3 pm, α = 88.33°, β = 102.79°, γ = 92.40° and Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号