首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new hybrid fluorides, {[(C2H4NH3)3NH]4+}2 · (H3O)+ · [Al7F30]9– ( I ) and {[(C2H4NH3)3NH]4+}2 · [Al7F29]8– · (H2O)2 ( II ), are synthesized by solvothermal method. The structure determinations are performed by single crystal technique. The symmetry of both crystals is triclinic, sp. gr. P 1, I : a = 9.1111(6) Å, b = 10.2652(8) Å, c = 11.3302(8) Å, α = 110.746(7)°, β = 102.02(1)°, γ = 103.035(4)°, V = 915.9(3) Å3, Z = 1, R = 0.0489, Rw = 0.0654 for 2659 reflections, II : a = 8.438(2) Å, b = 10.125(2) Å, c = 10.853(4) Å, α = 106.56(2)°, β = 96.48(4)°, γ = 94.02(2)°, V = 877.9(9) Å3, Z = 1, R = 0.0327, Rw = 0.0411 for 3185 reflections. In I , seven corner‐sharing AlF6 octahedra form a [Al7F30]9– anion with pseudo 3 symmetry; such units are found in the pyrochlore structure. The aluminum atoms lie at the corners of two tetrahedra, linked by a common vertex. In II , similar heptamers are linked in order to build infinite (Al7F29)n8– chains oriented along a axis. In both compounds, organic moieties are tetra protonated and establish a system of hydrogen bonds N–H…F with four Al7F309– heptamers in I and with three inorganic chains in II .  相似文献   

2.
Oxidative Fluorination of (CF3)(R) (R = CF3, Cl) and the Crystal Structure of (CF3)(Cl) F+ AsF6? Oxidative fluorination of (CF3)(R) (R = CF3, Cl) with XeF+MF6? (M = As, Sb) in anhydrous HF results in formation of monofluorsulfonium hexafluorometalates. The salts are characterized by vibrational, NMR, and mass spectra. (CF3)(Cl)F+ AsF6? crystallizes in the monoclinic space group P21/c with a = 9.955(10) Å, b = 11.050(5) Å, c = 12.733(15) Å, β = 97.77(5)°, and Z = 4.  相似文献   

3.
Crystal structures of a series of manganese(I) complexes containing tripodal ligands were determined. For [η3-{CH3C(CH2PPh2)2(CH2SPh)-P,P′,S}Mn(CO)3]PF6 ( 1 ): a = 10.856(3) Å, b = 19.698(3) Å, c = 17.596(5) Å, β = 96.17(2)°, monoclinic, Z = 4, P21/c, R(Fo) = 0.068, Rw(Fo) = 0.055 for 3617 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)(CH2SPh)2-P,P′,S}Mn(CO)3]PF6 ( 2 ): a = 9.890(2) Å, b = 20.403(4) Å, c = 10.269(3) Å, β = 117.44(2)°, monoclinic, Z = 2, P2l, R(Fo) = 0.050, Rw(Fo) = 0.037 for 1760 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)2(CH2S)-P,P′,S}Mn(CO)3] ( 4 ): a = 8.191(7) Å, b = 10.495(3) Å, c = 19.858(6) Å, α = 99.61(2)°, β = 96.17(2)°, γ = 92.70(4)°, triclinic, Z = 2, P-I, R(Fo) = 0.048, Rw(Fo) = 0.039 for 2973 reflections with Io > 2σ(Io). There is no significant difference in the bond lengths of Mn-S bonds among three species in their crystal structures [2.325(2) Å in 1; 2.358(4) in 2; 2.380(2) in 4], but the better donating ability of thiolate in complex 4 appears on the lower frequencies of its carbonyl stretching absorptions.  相似文献   

4.
Ba3V2O4F8 is prepared by hydrothermal synthesis. The crystal structure is established from single crystal X-ray diffraction data: Space group Pnnm, Z = 4, a = 9.945(4) Å, b = 10.277(1) Å and c = 9.673(1) Å R = 0.0331, Rw = 0.0315 for 892 independent reflections and 86 parameters. The structure is related to that Ba3Al2F12 and is described in terms of isolated [V4(O,F)20]8? tetrameric groups of octahedra inserted in a tridimensional network of (FBa4) tetrahedra. Location of oxygen and fluorine atoms is discussed with the help of bond valence calculations.  相似文献   

5.
Pb3Fe2F12 grown by hydrothermal synthesis, crystallizes in the triclinic system, space group P1 , with a = 7.403(2) Å, b = 7.621(2) Å, c = 9.890(3) Å, α = 110.45(2)°, β = 107.98(1)°, γ = 95.92(2)°, V = 483.12(4) Å3, Z = 2. The structure was solved from single crystal data using 3 913 independent reflections (R = 0.045 and Rw = 0.045). Characteristical of this structure is the presence of isolated tetrameric groups [Fe4F20]8? in form of “rings” as previously observed in Ba3Al2F12. “Independent” fluorine ions are also located and their cationic coordination is discussed. In contrast to Ba3Fe2F12, all the rings are parallel in the structure.  相似文献   

6.
Pentacoordinated aminosulphur (IV) trifluorides, R2NSF3, (in this paper the lone pair in S(IV)-derivatives is always considered as a ligand) and aminosulphur(VI)-oxidetrifluorides, R2NS(O)F3, readily lose a fluoride ion to Lewis acids (AsF5, SbF5, BF3) to give sulphur-containing cationic species [R2NSF2]+ and [R2NS(O)F2]+ with tetracoordinated sulphur. Tetracoordinated neutral dialkylaminosulphur(IV)-oxidefluorides, R2NS(O)F, and amino-imino sulphur(IV)fluorides, R2NS(=NRf)F, give three-coordinated sulphur cations [R2NSO]+] or [R2NSNRf]+.The three-coordinated sulphur(VI)cation [R2NS(O)NR]+ has also been formed.  相似文献   

7.
Ba7Fe6F32 · 2H2O was prepared from HF aqueous solution in a teflon bomb (Berghof) at 180°C. A partial exchange F?/OH? can be realized in more diluted HF medium and leads to Ba7Fe6F32–x(OH)x · 2H2O. The compounds crystallize in the monoclinic system, space group C2/m (Z = 2) with a = 17.023(1) Å, b = 11.482(1) Å, c = 7.624(1) Å, β = 101.13(1)° for x = 0 and a = 17.036(2) Å, b = 11.489(1) Å, c = 7.620(2) Å, β = 101.48(1)° for x ≈? 5.3. The structures were determined from 2 256 and 1 343 independent reflections for x = 0 and x ≈? 5.3 respectively, collected with a Siemens AED2 four-circle diffractometer with the MoKα radiation (R = 0.0235 and Rw = 0.0240 for x = 0 and R = 0.0324 and Rw = 0.0335 for x ≈? 5.3). The structure, closely related to that of the Jarlite-type, is built up from isolated octahedra trimers [Fe3F16]7?, connected together by Ba2+-cations. The location of anions and water molecules is discussed from bond valence calculations. Magnetic and Mössbauer studies are reported and discussed.  相似文献   

8.
On Chalcogenolates. 148. Reaction of Formamide with Carbon Disulfide. 2. Crystal Structure of Potassium N-Formyl Dithiocarbamate K[S2C? NH? CO? H] crystallizes with Z = 16 in the monoclinic space group Cc with cell dimensions a = 13.187(13) Å, b = 12.928(3) Å, c = 13.962(6) Å, and β = 101.75 (3)°. The crystal structure has been determined from single crystal X-ray data measured at 20°C and refined to a conventional R of 0.034 for 1857 independent reflections (Rw = 0.038). The compound crystallizes by building a super-structure, which is based on an H-bridged 16-membered ring-system, formed by four[S2C? NH? CO? H]? anions. Two different binuclear K+ coordination polyhedra are formed with two oxygen and two sulfur atoms in common.  相似文献   

9.
Single-Crystal Growth and Structure Refinement of RbAu and CsAu Single-crystals of RbAu and CsAu were obtained by the reaction of the alkalimetal azides with gold-powder at 400°C. The structures were determined from X-ray single-crystal diffraktometer data: space group Pm3m, Z = 1; RbAu, a = 4.098(1) Å, R/Rw(w = 1) = 0.011/0.011, N(Fo2) ≥ 3σ(Fo2) = 41 and N(var.) = 4; CsAu, a = 4.258(1) Å, R/Rw(w = 1) = 0.009/0.010, N(Fo2) ≥ 3σ(Fo2) = 34 and N(var.) = 4. Both compounds crystallize in the completely ordered CsCl-type with neglible deviations from the ideal 1:1-composition.  相似文献   

10.
On Chalcogenolates. 170. Reaction of N,N′-Diphenyl Formamidine with Carbon Disulfide 3. Crystal Structure of Potassium N,N′-Diphenyl N-Formimidoyl Dithiocarbamate · Dioxane The title compound K[S2C? N(C6H5)? CH?NC6H5] · C4H8O2 crystallizes with Z = 4 in the monoclinic space group P21/a with cell dimensions a = 10.703(2) Å, b = 18.068(3) Å, c = 10.504(3) Å, β = 100.96(3)°. The crystal structure has been determined from single crystal X-ray data measured at 20°C and refined to a conventional R of 0.052 for 4556 independent reflections (Rw = 0.054). The K+ cation is surrounded of one oxygen, one nitrogen, and three sulfur atoms to form a distorted trigonal bipyramid. The S2CNCN part of the anion, which exists as E, E conformer, is plane. The dioxane molecule has chair conformation without symmetry centre.  相似文献   

11.
Three new uranyl polyphosphates, α‐K[(UO2)(P3O9)] ( 1 ), β‐K[(UO2)(P3O9)] ( 2 ), and K[(UO2)2(P3O10)] ( 3 ), were prepared by high‐temperature solid‐state reactions. The crystal structures of the compounds have been solved by direct methods: 1 – monoclinic, P21/m, a = 8.497(1), b = 15.1150(1), c = 14.7890(1) Å, β = 91.911(5)°, V = 1898.3(3) Å3, Z = 4, R1 = 0.0734 for 4181 unique reflections with |F0| ≥ 4σF; 2 – monoclinic, P21/n, a = 8.607(1), b = 14.842(2), c = 14.951(1) Å, β = 95.829(5)°, V = 1900.0(4) Å3, Z = 4, R1 = 0.0787 for 3185 unique reflections with |F0| ≥ 4σF; 3 – Pbcn, a = 10.632(1), b = 10.325(1), c = 11.209(1) Å, V = 1230.5(2) Å3, Z = 4, R1 = 0.0364 for 1338 unique reflections with |F0| ≥ 4σF. In the structures of 1 and 2 , phosphate tetrahedra share corners to form infinite [PO3]? chains, whereas, in the structure of 3 , tetrahedra form linear [P3O10]5? trimers. The structures are based upon 3‐D frameworks of U and P polyhedra linked by sharing common O corners. The infinite [PO3]? chains in the structures of 1 and 2 are parallel to [100] and [–101], respectively. The uranyl polyphosphate frameworks are occupied by host K+ cations.  相似文献   

12.
[O2]2+2[Ti7F30]2? has been obtained by reaction of TiO2 with a mixture of fluorine and oxygen (pF2/O2 ≈ 300–3500 atm., t ≈ 300–450°C) either as colourless powder or in form of colourless, clear needles. From single crystal studies the spacegroup is P3 - C3i1 (No. 147) with a = 10.192, c = 6.50o Å, Z = 1. The crystal structure has been refined to R = 0.086 [Rw = 0.058] (748 unique reflexions [Fo > 2σ(Fo)]). From the structure determination [O2]2+2[Ti7F30]2? has isolated columns of partially distorted [TiF6] octahedra (- column structure) which are connected only quite loosely by (disordered) O2+ cations. νO2+ is at 1857 cm?1, the magnetic moment μeff = 2.35 B.M. (295 K) is quite as expected for a ‘spin-only’ case.  相似文献   

13.
Pb8FeIIFeF24 is triclinic: a = 20.118(3) Å, b = 5.597(1) Å, c = 9.440(2) Å, α = 89.75(2)°, β = 105.79(2)°, α = 89.38(2)°, Z = 2. The structure is solved in the unconventional space group C1 , from X-ray single crystal data using 1 641 independent reflections (R = 0.048, Rw = 0.051). It is built up from the stacking of two subnetworks along the a axis: fluorite-like [Pb8F10]n6n+ layers and infinite dimetallic [FeIIFeF14]n6n? double-chains of corner-sharing octahedra running along the b axis.  相似文献   

14.
K2Br(OH) and Rb2Br(OH): Two New Ternary Alkali Metal Halide Hydroxides with a Pronounced Structural Relationship to KOH resp. RbOH Two isotypic compounds K2Br(OH) and Rb2Br(OH) were prepared in the systems KOH/KBr and RbOH/RbBr. Their structures were determined by single crystal X-ray methods: K2Br(OH): P21/m, Z = 2, a = 6.724(1) Å, b = 4.272(4) Å, c = 8.442(2) Å, β = 108.14(2)°, Z(Fo) = 651 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.041/0.047 Rb2Br(OH): P21/m, Z = 2, a = 6.918(3) Å, b = 4.483(2) Å, c = 8.850(5) Å, β = 108.08(6)°, Z(Fo) = 326 mit (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 27, R/Rw = 0.074/0.082. The compounds are built up by chains of [M2(OH)+] connected via Br?. The structure of the chains as well as their orientation to one another show a pronounced relationship to the structures of the room temperature modifications of the isotypic binary hydroxides KOH and RbOH.  相似文献   

15.
The gas‐phase reaction of CH3+ with NF3 was investigated by ion trap mass spectrometry (ITMS). The observed products include NF2+ and CH2F+. Under the same experimental conditions, SiH3+ reacts with NF3 and forms up to six ionic products, namely (in order of decreasing efficiency) NF2+, SiH2F+, SiHF2+, SiF+, SiHF+, and NHF+. The GeH3+ cation is instead totally unreactive toward NF3. The different reactivity of XH3+ (X = C, Si, Ge) toward NF3 has been rationalized by ab initio calculations performed at the MP2 and coupled cluster level of theory. In the reaction of both CH3+ and SiH3+, the kinetically relevant intermediate is the fluorine‐coordinated isomer H3X‐F‐NF2+ (X = C, Si). This species forms from the exoergic attack of XH3+ to one of the F atoms of NF3 and undergoes dissociation and isomerization processes which eventually result in the experimentally observed products. The nitrogen‐coordinated isomers H3X‐NF3+ (X = C, Si) were located as minimum‐energy structures but do not play an active role in the reaction mechanism. The inertness of GeH3+ toward NF3 is also explained by the endoergic character of the dissociation processes involving the H3Ge‐F‐NF2+ isomer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Pb3Al2F12 is a fluorometalate obtained in single-crystal form by hydrothermal synthesis. It crystallizes in the monoclinic system, space group P 21/n, with a = 9.435(6) Å, b = 9.610(5) Å, c = 10.100(9) Å, β = 90.59(5)°, V = 915.7(2) Å3, Z = 4. The structure was solved from single crystal using 3 044 unique reflections (MoKα, λ = 0.71073 Å), R = 0.0463, Rw = 0.0465. The structure exhibits isolated tetrameric groups of octahedra encaged in a subnetwork of independent fluoride polyhedra and is related to that of Ba3Al2F12. A discussion about the existence and the structure of A3M2F12 compounds is given.  相似文献   

17.
On Chalcogenolates. 152. Studies on Derivatives of N-Thioformyl Dithiocarbamic Acid. 2. Crystal Structure of Tetra-n-butylammonium N-Thioformyl Dithiocarbamate The title compound [N(nC4H9)4][S2C? NH? CS? H] crystallizes with Z = 2 in the triclinic space group P1 with cell dimensions a = 9.694(2) Å, b = 11.478(3) Å, c = 12.551(6) Å, α = 63.03(3)°, β = 66.42(2)°, γ = 85.60(2)°. The crystal structure has been determined from single crystal X-ray data measured at 20°C and refined to a conventional R of 0.061 for 2249 independent reflections (Rw = 0.042). The structure is built up of dimeric aggregates consisting of 2[N(nC4H9)4]+ cations and 2[S2C? NH? CS? H]? anions. The two anions are linked together by ? CS? S…?H? N bridges. To make possible a space saving stacking of the dimeric aggregates in the crystal, one methyl group in terminal position of one n-butyl chain in the cation has gauche conformation.  相似文献   

18.
Structural Investigations on the Oxidenitrides SrTaO2N, CaTaO2N and LaTaON2 by Neutron and X‐ray Powder Diffraction The crystal structures of the perovskite related oxidenitrides SrTaO2N, LaTaON2 and CaTaO2N have been determined with special regard to the structures of the respective anionic partial structure. The structure refinements were performed by individual Rietveld analyses of both X‐ray and neutron powder diffractograms and in addition by joint refinements in order to confirm the results. Both refinement methods yield consistent structure solutions. At least the first two compounds have fully ordered anionic sublattices. The crystal structure of SrTaO2N has been solved in the space group I4/mcm (a = 5.7049(3) Å, c = 8.0499(5) Å, Rp = 0.0706, Rwp = 0.0904, reflections: 70 (neutrons)/36 (X‐ray), R(F2)(n) = 0.147, R(F2)(X) = 0.0952), with an ordered anionic partial structure. LaTaON2 crystallizes monoclinic (C2/m, a = 8.0922(3) Å, b = 8.0603(2) Å, c = 5.7118(2) Å, β = 134.815(1)°, Rp = 0.0592, Rwp = 0.0766, reflections: 235(n)/113(X), R(F2)(n) = 0.0944, R(F2)(X) = 0.165) and also shows a totally ordered distribution of the anions. In the case of CaTaO2N (Pnma, a = 5.6239(3) Å, b = 7.8954(4) Å, c = 5.5473(3) Å, Rp = 0.0503, Rwp = 0.0656, reflections 206(n)/110(X), R(F2)(n) = 0.0985, R(F2)(X) = 0.0405) slightly unbalanced displacement parameters (neutron data, ordered O/N distribution model) hint at a partial exchange of oxygen and nitrogen.  相似文献   

19.
Abstract

[Cp2Fe2(CO)2(μ-CO)(μ-CHP(OPh)3)+][BF? 4] crystallizes in the centrosymmetric monoclinic space group P21/n with a = 12.553(7) Å, b = 16.572(11) Å, c = 15.112(8) Å, β = 100.00(4)°, V = 3096(3) Å3 and D(calcd.) = 1.579 g/cm3 for Z = 4. The structure was refined to R(F) = 5.83% for 1972 reflections above 4σ(F). The cation contains two CpFe(CO) fragments linked via an iron—iron bond (Fe(1)—Fe(2) = 2.544(3)Å), a bridging carbonyl ligand (Fe(1)—C(4) = 1.918(1) Å, Fe(2)—C(4) = 1.946(12)Å) and a bridging CHP(OPh)3 ligand (Fe(1)—C(1) = 1.980(9)Å, Fe(2)—C(1) = 1.989(8)Å). Distances within the μ-CHP(OPh)3 moiety include a rather short carbon—phosphorus bond [C(1)—P(1) = 1.680(10)Å] and P—O bond lengths of 1.550(7)–1.579(6)Å. The crystal is stabilized by a network of F…H—C interactions involving the BF? 4 anion.

[Cp2Fe2(CO)2(μ-CO)(μ-CHPPh3)+][BF? 4], which differs from the previous compound only in having a μ-CHPPh3 (rather than μ-CHP(OPh)3) ligand, crystallizes in the centrosymmetric monoclinic space group P21/c with a = 11.248(5)Å, b = 13.855(5)Å, c = 18.920(7)Å, β = 96.25(3)°, V = 2931(2)Å3 and D(calcd.) = 1.559 g/cm3 for Z = 4. This structure was refined to R(F) = 4.66% for 1985 reflections above 4σ(F). Bond lengths within the dinuclear cation here include Fe(1)-Fe(2) = 2.529(2)Å, Fe(1)—C(3) = 1.904(9) Å and Fe(2)—C(3) = 1.911(8) Å (for the bridging CO ligand) and Fe(1)—C(1P) = 1.995(6) Å and Fe(2)—C(1P) = 1.981(7) Å (for the bridging CHPPh3 ligand). Distances within the μ-CHPPh3 ligand include a longer carbon—phosphorus bond [C(1P)—P(1) = 1.768(6)Å] and P(1)—C(phenyl) = 1.797(7)–1.815(8) Å.  相似文献   

20.
A series of novel α‐fluoroalkyl ammonium salts was obtained from the corresponding cyano compounds or nitriles by reaction with anhydrous HF. Room‐temperature stable trifluoromethyl ammonium salts were obtained in quantitative yield in a one‐step reaction at ambient temperature from the commercially available starting materials BrCN or ClCN. The novel cations [CF3CF2NH3]+, [HCF2CF2NH3]+, and [(NH3CF2)2]2+ were obtained from CF3CN, HCF2CN, and (CN)2, respectively, and anhydrous HF. The aforementioned fluorinated ammonium cations were isolated as room temperature stable [AsF6]? and/or [SbF6]? salts, and characterized by multi‐nuclear NMR and vibrational spectroscopy. The salts [HCF2NH3][AsF6] and [CF3NH3][Sb2F11] were characterized by their X‐ray crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号