首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li2PtH2, Synthesis and Structure The synthesis of Li2PtH2 succeeded in decomposing Li5Pt2H9 at 220°C in an argon atmosphere. X-ray investigations on a powdered sample and elastic neutron diffraction experiments on the deuterated compound led to the complete structure. Li2PtH2 crystallizes in the space group Immm with Z = 2. The structure is characterized by [PtH2]2? -dumb-bells which are hitherto unknown in platinum compounds. The arrangement of the [PtH2]2? -anions and of the lithium cations shows a close relationship to the hydride Li2PdH2 which crystallizes tetragonal I-centred.  相似文献   

2.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

3.
Li6+2x[B10Se18]Sex (x ≈ 2), an Ion‐conducting Double Salt Li6+2x[B10Se18]Sex (x ≈ 2) was prepared in a solid state reaction from lithium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 800 °C. Subsequent cooling from 600 °C to 300 °C gave amber colored crystals with the following lattice parameters: space group I2/a (at 173 K); a = 17.411(1) Å, b = 21.900(1) Å, c = 17.820(1) Å, β = 101.6(1)°. The crystal structure contains a well‐defined polymeric selenoborate network of composition ([B10Se16Se4/2]6?)n consisting of a system of edge‐sharing [B10Se16Se4/2] adamantanoid macro‐tetrahedra forming large channels in which a strongly disorderd system of partial occupied Li+ cations and additional disordered Se2? anions is observed. The crystal structure of the novel selenoborate is isotypic to Li6+2x[B10S18]Sx (x ≈ 2) [1]. X‐ray and 7Li magic‐angle spinning NMR data suggest that the site occupancies of the three crystallographically distinct lithium ions exhibit a significant temperature dependence. The lithium ion mobility has been characterized by detailed temperature dependent NMR lineshape and spin‐lattice relaxation measurements.  相似文献   

4.
Li47B3P14N42, the first lithium nitridoborophosphate, is synthesized by two different routes using a Li3N flux enabling a complete structure determination by single‐crystal X‐ray diffraction data. Li47B3P14N42 comprises three different complex anions: a cyclic [P3N9]12−, an adamantane‐like [P4N10]10−, and the novel anion [P3B3N13]15−. [P3B3N13]15− is the first species with condensed B/N and P/N substructures. Rietveld refinement, 6Li, 7Li, 11B, and 31P solid‐state NMR spectroscopy, FTIR spectroscopy, EDX measurements, and elemental analyses correspond well with the structure model from single‐crystal XRD. To confirm the mobility of Li+ ions, their possible migration pathways were evaluated and the temperature‐dependent conductivity was determined by impedance spectroscopy. With the Li3N flux route we gained access to a new class of lithium nitridoborophosphates, which could have a great potential for unprecedented anion topologies with interesting properties.  相似文献   

5.
In an attempt to synthesize LiEu3S3[SiS4] utilizing elemental europium and sulfur as well as SiS2 and an excess of LiCl as flux and lithium source, dark red, platelet‐shaped single crystals of Li3Eu6[SiS4]4 were obtained. This new compound crystallizes in the cubic space group I4 3d (a = 1369.22(5) pm) with four formula units per unit cell. Both the Li+ and the Si4+ cations are surrounded by four sulfide anions. The [SiS4]4– tetrahedra show merely a slight trigonal distortion, while the [LiS4]7– units are best described as flattened bisphenoids. The europium cations exhibit an eightfold, rather irregular coordination environment by eight S2– anions and have to be regarded mixed‐valent with a +2:+3 charge‐ratio of 5:1 in order to gain electroneutrality. The lack of an inversion center is caused by the [SiS4]4– tetrahedra being stacked exclusively top up along [111] in this acentric crystal structure.  相似文献   

6.
The possibility of formation of various ion clusters for lithium salts LiXF6 (X = As, P) is studied. The dynamic matrix of the clusters in a gas phase is calculated by numerical and analytical differentiation of the full energy of clusters in the MO LCAO approximation by the Hartree-Fock-Roothaan (HFR) method with the aid of program package PC GAMESS. Stable ionic clusters are ion pairs Li+[XF6] with bi- and tridentate cation coordination relative to the octahedral anion, ion triplets [XF6]Li+[XF6] and Li+[XF6]Li+ with bi- and tridentate coordination, and ion dimers { Li+[XF6]}2 with bidentate coordination. Trimers {Li+[XF6]}3 and tetramers {Li+[XF6]}4 in the form of symmetrical ring structures with monodentate coordination are stable only for [AsF6]. For stable ion species, densities of vibrational states and IR spectra are calculated.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 546–555.Original Russian Text Copyright © 2005 by Popov, Nikiforov, Bushkova, Zhukovskii.  相似文献   

7.
The solid‐state structure of the rhodium complex (dimethylamine–dimethylaminoborane–borane‐κ2H,H′)dihydridobis(triisopropylphosphane‐κP)rhodium(III) tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, [RhH2(C4H18B2N2)(C9H21P)2](C32H12BF24), is reported. The complex contains the linear diborazine H3B·NMe2BH2·NMe2H, a kinetically important intermediate in the transition‐metal‐mediated dehydrocoupling of H3B·NMe2H, ultimately affording the dimeric amino‐borane [H2BNMe2]2. The structure of the title complex contains a distorted octahedral RhIII centre, with mutually trans phosphane ligands and cis hydride ligands. The diborazine is bound through two Rh—H—B σ‐bonds and exhibits a gauche conformation with respect to the B—N—B—N backbone.  相似文献   

8.
In the title compound, [Li(C5H3N4O2)(H2O)2]n, the coordinate geometry about the Li+ ion is distorted tetrahedral and the Li+ ion is bonded to N and O atoms of adjacent ligand mol­ecules forming an infinite polymeric chain with Li—O and Li—N bond lengths of 1.901 (5) and 2.043 (6) Å, respectively. Tetrahedral coordination at the Li+ ion is completed by two cis water mol­ecules [Li—O 1.985 (6) and 1.946 (6) Å]. The crystal structure is stabilized both by the polymeric structure and by a hydrogen‐bond network involving N—H?O, O—H?O and O—H?N hydrogen bonds.  相似文献   

9.
Li2H3IO6, a New Variant of the Molybdenite Structure Li2H3IO6 crystallizes in P61 (a = 529.70(8), c = 2 759.6(5) pm; Z = 6). The crystals are twinned by merohedry, described by m ‖ [001] and 2 ? [001]. According to the results of an X-ray structure determination (2 778 diffractometer data, Rw = 0.047), Li2H3IO6 exhibits a layer structure, with oxygen forming a distorted variant of the sulfur partial structure in molybdenite (MoS2), however, with iodine and lithium in the more (Li) or less (I) distorted octahedral holes. The Li2IO6 packages are connected via strong hydrogen bonds along the edges of distorted trigonal prisms.  相似文献   

10.
Ternary Lithium Rare Earth Nitrates with Lonesome Nitrate Ions: Li3[M(NO3)5](NO3) (M = Gd? Lu, Y). The Crystal Structure of Li3Er(NO3)6 Single crystals of the ternary nitrate Li3Er(NO3)6 are obtained from a solution of “Er(NO3)3” in the melt of LiNO3. In Li3Er(NO3)6 (monoclinic, P21/n, Z = 4; a = 776.0(1); b = 748.86(8); c = 2 396(1) pm; β = 90.76(3)°; R1 = 0.0490; wR2 = 0.0792), Er3+ is surrounded by five bidentate nitrate ligands yielding the anionic units [Er(NO3)5]2?. These are arranged in the direction of the 21 screw axis. Two lonesome NO3? ions are in the middle of such a “helix” and are connected by Li+ with the anions [Er(NO3)5]2?. The helices are moved against each other by about half of the lattice constant a and are connected by further Li+ ions.  相似文献   

11.
The two hypersilylcuprates LiCu2Hyp3 ( 2 ) and [Li7(OtBu)6][Cu2Hyp3] ( 3 ) (Hyp = Si(SiMe3)3) were synthesized by reactions of unsolvated lithium hypersilanide, LiHyp with hypersilylcopper and CuOtBu, respectively. Both contain the novel A‐frame trihypersilyldicuprate anion [Cu2Hyp3]. In the former case a molecular compound is produced containing intimate ion pairs. In the latter case the cuprate anion and the unique large [Li7(OtBu)6]+ cation form a salt‐like compound, only sparingly soluble in unpolar solvents. According to NBO analyses the bonding within the trihypersilyldicuprate moiety is best described by interaction of a bridging lewis‐basic hypersilanide anion with two lewis‐acidic hypersilyl copper fragments.  相似文献   

12.
A New Oxouranate(VI): K2Li4[UO6]. With a Remark about Rb2Li4[UO6] and Cs2Li4[UO6] For the first time K2Li4UO6 has been prepared by an exchange reaction of α-Li6UO6 with K2O [K:U = 2.0:1, sealed au-tube; 750°C; 30 d single crystals; 680°C, 10 d powder]. The irregular shaped single crystals, which are of yellow color and sensitive to moisture crystallize in P3 m1 (Z = 1) with a = 619.27(5), c = 533.76(6) pm. The structure determination (PW 1100, AgKα R = 4.80%, Rw = 4.81% for 220 unique reflexions) reveals a new type of structure. The characteristic elements are the isolated group [UO6] and the C.N. = 12 for K+. While Li(1) has a nearly regular square of 4 O2? as coordination polyhedron, Li(2) is octahedrally surrounded. The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed. In addition to K2Li4[UO6] the new oxides Rb2Li4[UO6] and Cs2Li4[UO6] are prepared as pale yellow powders which are little sensitive to moisture (both: au-tube, 680°C, 10 d). According to powder datas both compounds are isotypic with K2Li4[UO6] [Rb2Li4[UO6]: a = 622.91(5), c = 535.93(6) pm; Cs2Li4[UO6]: a = 626.70(6), c = 539.92(6) pm].  相似文献   

13.
An Unusual Trimeric Bimetallic Li? Zr Complex with the Backbone [Zr32-OH)33-O)Li5] by Reaction of Zirconiumorgano and Hydrido Complexes with Water The reaction of compounds of the type [(LZr)(LiH)(L′)]n and [(LZr)(LiH)(L′)(alkyne)]n (L: 2,2′-Biphenolato-dianion, L′: thf, Bu3P, alkyne: Ph? C?C? SiMe3, CH?CH) with water at 0°C in a thf solution results in the formation of th trimeric bimetallic complex 8 [(L2Zr)32-OH)33-O)Li5(thf)8(H2O)5] in 50% yield. The X-ray analysis of 8 shows that a planar six-membered ring Zr32-OH)3 is formed. In the middle of this ring is a dianionic oxygen atom placed, coordinating to the three L2Zr centres in a planar μ3-coordination (bond angles 120,05μ). Five lithium ions stabilize the anionic backbone by bridging the biphenolato chelate ligands, which form seven-membered chelate rings with the atoms. 1H-, 13C-, and 7Li-NMR spectra exhibit that the solid state structure remains unchanged in solution (thf).  相似文献   

14.
Investigations on the Crystal Structure of Lithium Dodecahydro‐closo‐dodecaborate from Aqueous Solution: Li2(H2O)7[B12H12] By neutralization of an aqueous solution of the acid (H3O)2[B12H12] with lithium hydroxide (LiOH) and subsequent isothermic evaporation of the resulting solution to dryness, it was possible to obtain the heptahydrate of lithium dodecahydro‐closo‐dodecaborate Li2[B12H12] · 7 H2O (≡ Li2(H2O)7[B12H12]). Its structure has been determined from X‐ray single crystal data at room temperature. The compound crystallizes as colourless, lath‐shaped, deliquescent crystals in the orthorhombic space group Cmcm with the lattice constants a = 1215.18(7), b = 934.31(5), c = 1444.03(9) pm and four formula units in the unit cell. The crystal structure of Li2(H2O)7[B12H12] can not be described as a simple AB2‐structure type. Instead it forms a layer‐like structure analogous to the well‐known barium compound Ba(H2O)6[B12H12]. Characteristic feature is the formation of isolated cation pairs [Li2(H2O)7]2+ in which the water molecules form two [Li(H2O)4]+ tetrahedra with eclipsed conformation, linked to a dimer via a common corner. The bridging oxygen atom (∢(Li‐ O ‐Li) = 112°) thereby formally substitutes Ba2+ in Ba(H2O)6[B12H12] according to (H2 O )Li2(H2O)6[B12H12]. A direct coordinative influence of the [B12H12]2— cluster anions to the Li+ cations is not noticeable, however. The positions of the hydrogen atoms of both the water molecules and the [B12H12]2— units have all been localized. In addition, the formation of B‐Hδ—···δ+H‐O‐hydrogen bonds between the water molecules and the hydrogen atoms from the anionic [B12H12]2— clusters is considered and their range and strength is discussed. The dehydratation of the heptahydrate has been investigated by DTA‐TG measurements and shown to take place in two steps at 56 and 151 °C, respectively. Thermal treatment leads to the anhydrous lithium dodecahydro‐closo‐dodecaborate Li2[B12H12], eventually.  相似文献   

15.
On Tantalates ‘rich in Cations’ On Li7[TaO6] For the first time, colourless single crystals of Li7[TaO6] were grown by annealing intimate mixtures of Li2O and Ta2O5 (Li:Ta = 7,7:1) in closed Ni-cylinders (1 000°C, 156 d). [Trigonal-rhomboedral with a = 535.8(1) pm, c = 1 507.3(3) pm, c/a = 2.81/Guinier-Simon-powder data; Z = 3. Space group R3 for the part Li(1)6TaO6 and presumably P3 for Li7TaO6, including Li(2)]. The crystal structure was solved by four-cycle-diffractometer data [Mo? Kα , 331 from 331 Io(hkl), R = 1.99%, Rw = 1.96%], parameters see text. The positions of anions correspond to the motif of a hexagonal closest packing of spheres, obviously deformed (with MEFIR of O2? space filling corresponds to 69.8% instead of expected 73.2%. 1/3 of the octahedron holes are ordered occupied by Ta and Li(2), 1/2 of the tetrahedral holes likewise ordered by Li(1). All polyhedra of coordination of the anions are trigonal prisms. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, as well as charge distribution ‘CHARDI’ are calculated and discussed.  相似文献   

16.
Oxocobaltates of Alkali Metals. On Li8CoO6. Hitherto unknown Li8CoO6, rubin- red single crystals, cristallizes according to WEISSENBERG and precession photographs (MoKα) hexagonal with a = 5.44 Å, c = 10.87 Å; c/a = 2.0; Z = 2, space group C? P63cm. Atomic parameters see text. The structure derives from a closest packing of O2?, ABACA … (The tetrahedral, ?isolated”? groups [CoO4] show remarkable short distances Co–O (1.66 Å), comparable with [CoO4] in Li4CoO4, being isotypic with Li4SiO4. The MADELUNG Part of Lattice Energy is calculated and discussed.  相似文献   

17.
The solid solution Li8−2xCaxCeO6 (0 < x ≤ 0,5) and the definite phase Li6CaCeO6 have been obtained at 800°C through a study of Li---Ca---Ce---O system. Electrical measurements on the doped phases Litetr.6 [Li2-2xCaxCe□]oct.O6 show that the conductivity varies slightly with the creation of vacancies in the octahedral layers. This result unambiguously confirms the following diffusion mechanism: the conduction is assumed essentially by lithium ions located in the tetrahedral layers. The compound Li6CaCeO6 is isostructural with Li6In2O6. The cell is trigonal, Å, c = 10,603 Å, c/a = 1,0587, and Z = 6. This new quaternary phase, which belongs to the same structural family of oxides of the type Li8MO6, either pure or doped with calcium, may be represented by the formula Litetr.6[Ca Ce□]oct.O6. Electrical and structural data are correlated for this compound.  相似文献   

18.
Synthesis and Crystal Structure of a μ-Methylene-μ-hydrido-dialanate [R2Al(μ-CH2)(μ-H)AlR2]? (R = CH(SiMe3)2) tert-Butyl lithium reacts with the recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al[CH(SiMe3)2]2 2 in the presence of TMEDA under β-elimination; the thereby formed hydride anion is bound in a chelating manner by both unsaturated aluminium atoms forming a 3c–2e–Al? H? Al bond. The crystal structure of the product shows two independent molecules differing only slightly in bond lengths and angles, but significantly in conformation. While one of the Al2CH heterocycles deviates little from planarity with a rough C2 symmetry for the whole anion, the other one is folded with an angle of 21.1° and the arrangement of the substituents is best described by Cs symmetry.  相似文献   

19.
The isotypic nitridosilicates Li4Ca3Si2N6 and Li4Sr3Si2N6 were synthesized by reaction of strontium or calcium with Si(NH)2 and additional excess of Li3N in weld shut tantalum ampoules. The crystal structure, which has been solved by single‐crystal X‐ray diffraction (Li4Sr3Si2N6: C2/m, Z = 2, a = 6.1268(12), b = 9.6866(19), c = 6.2200(12) Å, β = 90.24(3)°, wR2 = 0.0903) is made up from isolated [Si2N6]10– ions and is isotypic to Li4Sr3Ge2N6. The bonding angels and distances within the edge‐sharing [Si2N6]10– double‐tetrahedra are strongly dependent on the lewis acidity of the counterions. This finding is discussed in relation to the compounds Ca5Si2N6 and Ba5Si2N6, which also exhibit isolated [Si2N6]10– ions.  相似文献   

20.
Preparation and vibrational spectra of the complexes [MBr6]?, [Br5MN3]? and [Br5MNPPh3]? of niobium and tantalum. Cyrstal structure of PPh4[NbBr6] The compounds PPh4[MBr6] and PPh4[MBr5N3] are obtained by reaction of MBr5 with PPh4Br or PPh4N3, respectively, in CH2Cl2 solution (M ? Nb, Ta). The azido complexes PPh4[MBr5N3] can also be obtained by reactions of the hexabromo complexes with iodine azide. According to its i.r. spectrum the symmetry of the [MBr6]? ion is lower than Oh in the solide state. This is corfirmed for PPh4[NbBr6] by a crystal structure analysis; it crystallizes in the monoclinic space group B2/b with four formula units in the unit cell and with the lattice constants a = 2301, b = 1777, c = 686 pm and γ = 96,6°. The structure was determined with X-ray diffraction data and was refined to a residual index of R = 0.055. The [NbBr6]? ion has the symmetry Ci, the deviations from Oh being small. In the azido complexes [MBr5N3]? the azido groups are covalently linked with the metal. From [NbBr5N3]? and PPh3 the complex [Br5Nb?N?PPh3]?, is obtained; for the analogous formation of the corresponding Ta complex photochemical activation is necessary. In this way the complex [Cl5Nb?N?AsPh3]? can also be obtained. I.r. spectra of all the compounds are reported and assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号