首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 747 毫秒
1.
A relationship is established between the functional forms of two kinds of singularities in dynamical variables that arise in complexified versions classical mechanics: singularities that are treated as a functions of complex initial conditions for real time and those that are treated as a functions of complex time for real initial conditions. The analysis is verified by numerical calculations. The results imply that Kowaleskaya–Painlevé condition for integrability can be phrased in terms of singularities with respect to initial conditions.  相似文献   

2.
This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and t he upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the bulk, and at the free interfaces we consider both the case of surface tension and the case of no surface forces.We are concerned with the Rayleigh–Taylor instability when the upper fluid is heavier than the lower fluid along the equilibrium interface. When the surface tension at the free internal interface is below the critical value, we prove that the problem is nonlinear unstable.  相似文献   

3.
It is commonly considered that the mechanical properties of the slurry are different from that of ordinary Newtonian fluid, and can be described by that of Bingham fluid. Hence its shearing stress should be described by the formula of the shearing stress of Bingham fluid. But the author holds the contrary opinion and firmly believes that the slurry is a highly viscous fluid with very long relaxation time such as those of asphalt, glass, etc. In this article, we have discussed the mechanical properties of the slurry and the resistance of a sphere moving with uniform velocity in the slurry. In the process of discussion, we use Stokes solution of the viscous fluid passing around a sphere. When the sphere is in equilibrium under the action of gravitational force, the force of buoyancy and the resistance, we get the velocity of sedimentation. When the velocity of sedimentation is equal to zero, we get the relation between the yield stress of Bingham fluid and the diameter of the particles which will not sink. The theoretical results calculated are compared with the experimental data of Northwest Institute of Hydrotechnical Research and Institute of Hydraulic Research, Yellow River Conservancy Commission. They are congruous.  相似文献   

4.
Several problems are known which are associated with the circular motion of a viscous incompressible fluid with a rotating cylinder[l, 2]. In the present paper we consider the case of unsteady circular motion of a viscous fluid with a cavity in the fluid.  相似文献   

5.
GENERALSECONDORDERFLUIDFLOWINAPIPEHeGuangyu(何光渝)(DepartmentofPetroleumEngineering,Xi'anPetroleumInstitute,Xi'an710061,P.R.Chi...  相似文献   

6.
In this paper we propose a new method for obtaining the exact solutions of the Mavier-Stokes (NS) equations for incompressible viscous fluid in the light of the theory of simplified Navier-Stokes (SNS) equations developed by the first author[1,2], Using the present method we can find some new exact solutions as well as the well-known exact solutions of the NS equations. In illustration of its applications, we give a variety of exact solutions of incompressible viscous fluid flows for which NS equations of fluid motion are written in Cartesian coordinates, or in cylindrical polar coordinates, or in spherical coordinates. The project supported by National Natural Science Foundation of China.  相似文献   

7.
Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-layer flows that are linearly stable for Re = ∞. The basic methodology consists of two steps. First we eliminate interfacial instabilities by using a yield stress fluid in one fluid layer and ensuring that for the base flow configurations studied we maintain an unyielded plug region at the interface. Secondly we eliminate linear shear instabilities by ensuring a strong enough Couette component in the second fluid layer, imposed via the moving interface. We show that this technique can be applied to both shear-thinning and visco-elastic fluids.  相似文献   

8.
9.
We study the system of differential equations for the fluid velocity and fluid temperature in a two-dimensional channel and also in a circular tube in a region of stabilized heat transfer. On the tube walls we specify boundary conditions of the second kind; we assume that the viscosity depends exponentially on the temperature. We consider the conditions under which one-dimensional nonisothermal flows arise.  相似文献   

10.
In a previous work we solved numerically the steady-state motion of an ideal fluid that fills a moving cylindrical container with partitions, and were able to compute the equivalent moments of inertia. Here we extend this work in two steps. First we introduce time dependence and then free surfaces, and are able to compute the transient motion of the fluid not filling the container. The main body of the work has to do with the treatment of free surfaces. Our approach is an extention to three dimensions of the volume of fluid method of Hirt and Nichols. The solution algorithm is outlined, and two examples that demonstrate its capability are presented.  相似文献   

11.
By studying the joint flow of a viscous and a micropolar fluid, we obtained a new boundary condition for the equations of the viscous fluid for the case where a thin layer of a granular fluid is present on the interface with the solid. Examples of using this condition in problems of drilling mud flow in the presence of a mud cake on the borehole wall are given.  相似文献   

12.
Non-Newtonan fluid is a kind of fluid whose components of stresstensor aren’t theliear funtions of compoents of the strain rate tensor.Non-Newtonianfluid is beingprocessed in many kinds of modern industry,Stability of flows for Non-Newtonianfluid is of important applicatuib,In this article we calculate subcritical thrdshold of flow which oecurs in polymer-processing when the melting substance is driven throughtwo parallel fixed boundaries.  相似文献   

13.
We revisit the approach proposed by F.L.  Chernousko to modeling the dynamics of a rigid body with a cavity entirely filled with a highly viscous fluid. Within the approach, a finite-dimensional model of the body+fluid system is offered and the influence of the fluid is represented as a special torque acting upon the body with solidified fluid. Our aim is to develop further and expand a few technical aspects of the Chernousko model. In particular, we offer a coordinate-free form for some essential formulas and consider the case of constrained dynamics. To illustrate the results obtained we explore the motion of a physical pendulum with a fluid-filled cavity on a rotating platform.  相似文献   

14.
To the well-known rotating annulus experiments we applied liquid crystal techniques of visualization in order to obtain clear video-pictures of internal flow and temperature in the fluid. Then we developed the idea of simultaneously injecting several types of liquid crystals of different temperature ranges to observe the fluid with a wide temperature range. It was shown that with this idea it was possible to take clear video-pictures throughout the whole interior of the fluid. This revealed that the pattern of the bottom flow does not have the characteristics of the Eady type baroclinic waves. Furthermore, the typcial meridional gradient of temperature of the baroclinic wave was directly observed from isothermal lines appearing in the fluid as colour band lines.  相似文献   

15.
Hayat  T.  Hameed  M. I.  Asghar  S.  Siddiqui  A. M. 《Meccanica》2004,39(4):345-355
The exact analytic solutions of two problems of a second order fluid in presence of a uniform transverse magnetic field are investigated. The governing equation is of fourth order ordinary differential equation and is solved using perturbation method. In the first problem we discuss the flow of a second order fluid due to non-coaxial rotations of a porous disk and a fluid at infinity. In second problem the flow of a second order conducting fluid between two infinite plates rotating about the same axis is investigated, with suction or blowing along the axial direction. For second order conducting fluid it is observed that asymptotic solution exists for the velocity both in the case of suction and blowing.  相似文献   

16.
In this paper we have studied the effects of temperature dependent fluid properties such as density, viscosity and thermal conductivity and variable Prandtl number on unsteady convective heat transfer flow over a porous rotating disk. Using similarity transformations we reduce the governing nonlinear partial differential equations for flow and heat transfer into a system of ordinary differential equations which are then solved numerically by applying Nachtsheim–Swigert shooting iteration technique along with sixth-order Runge–Kutta integration scheme. Comparison with previously published work for steady case of the problem were performed and found to be in very good agreement. The obtained numerical results show that the rate of heat transfer in a fluid of constant properties is higher than in a fluid of variable properties. The results further show that consideration of Prandtl number as constant within the boundary layer for variable fluid properties lead unrealistic results. Therefore, modeling thermal boundary layers with temperature dependent fluid properties Prandtl number must treated as variable inside the boundary layer.  相似文献   

17.
浸没的球面各向同性球壳的自由振动   总被引:1,自引:0,他引:1  
本文引入三个们移函数并用球面调和函数展开,可将球面各向同性弹性力学的基本方程转化成一个独立的二阶常微分方程和另一个耦合的二阶常微分方程组,采用液动压力表示流体与壳的相互作用,可以把无限大不可压缩流体中任意厚度球面各向同性球壳的自由振动频率计算归结为一个代数循征值问题,文中计算了若干种情况下球壳的频率,在各向同性情形与有关文献作了比较。  相似文献   

18.
Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.  相似文献   

19.
In this paper we extend some of our previous works on continua with stress threshold. In particular here we propose a mathematical model for a continuum which behaves as a non-linear upper convected Maxwell fluid if the stress is above a certain threshold and as a Oldroyd-B type fluid if the stress is below such a threshold. We derive the constitutive equations for each phase exploiting the theory of natural configurations (introduced by Rajagopal and co-workers) and the criterion of the maximization of the rate of dissipation. We state the mathematical problem for a one-dimensional flow driven by a constant pressure gradient and study two peculiar cases in which the velocity of the inner part of the fluid is spatially homogeneous.  相似文献   

20.
In order to determine the characteristics of the peristaltic transport of shear thinning non-Newtonian materials, the motion of a third-order fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic traveling wave of large wavelength and negligibly small Reynolds number was analyzed using a perturbation expansion in terms of a variant of the Deborah number. Within the range of validity of this analysis, we found the pumping rate of a shear-thinning fluid is less than that for a Newtonian fluid having a shear viscosity the same as the lower-limiting viscosity of the nonNewtonian material. Also, the space of variables for which trapping of a bolus of fluid occurs is reduced for the shear-thinning fluid investigated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号