首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental results on the near field development of a free rectangular jet with aspect ratio 10 are presented. The jet issues from a sharp-edged orifice attached to a rectangular settling chamber at Reh  23,000, based on slot width, h. Measurements on cross plane grids were obtained with a two-component hot wire anemometry probe, which provided information on the three dimensional characteristics of the flow field. Two key features of this type of jet are mean axial velocity profiles presenting two off axis peaks, commonly mentioned as saddleback profiles, and a predominant dumbbell shape as described by, for example, a contour of the axial mean velocity. The saddleback shape is found to be significantly influenced by the vorticity distribution in the transverse plane of the jet, while the dumbbell is traced to two terms in the axial mean vorticity transport equation that diffuse fluid from the centre of the jet towards its periphery. At the farthest location where measurements were taken, 30 slot widths from the jet exit, the flow field resembles that of an axisymmetric jet.  相似文献   

2.
The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100  ReD  700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.  相似文献   

3.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

4.
An experimental investigation on flow around an oscillating bubble and solid ellipsoid with a flat bottom was conducted. A single air bubble (equivalent diameter De=9.12 mm) was attached to a small disk (∼1 mm) at the end of a needle and suspended across a vertical square channel (100 mm) by wire wherein water flowed downward at a constant flowrate. The solid ellipsoid (De∼9.1 mm) was suspended across the square channel in the same manner. The equivalent diameter-based Reynolds and Eotvos number range, 1950<Re<2250 and 11<Eo<11.5, placed the bubble in the ‘wobbly’ regime while the flow in its wake was turbulent. A constant flowrate and one bubble size was used such that flow in the wake was turbulent. Velocity measurements of the flow field around the bubble or solid were made using a one CCD camera Digital Particle Image Velocimetry (DPIV) system enhanced by Laser Induced Fluorescence (LIF). The shape of the bubble or solid was simultaneously recorded along with the velocity using a second CCD camera and an Infrared Shadow Technique (IST). In this way both the flow-field and the boundary of the bubble (solid) were measured. The velocity vector plots of flow around and in the wake of a bubble/solid, supplemented by profiles and contours of the average and root-mean-square velocities, vorticity, Reynolds stress and turbulent kinetic energy, revealed differences in the wake flow structure behind a bubble and solid. One of the significant differences was in the inherent, oscillatory motion of the bubble which not only produced vorticity in the near-wake, but as a result of apparent vorticity stretching distributed the turbulent kinetic energy associated with this flow more uniformly on its wake, in contrast to the solid.  相似文献   

5.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

6.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

7.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

8.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

9.
This paper represents the results of an experimental study on the flow structure around a single sphere and three spheres in an equilateral-triangular arrangement. Flow field measurements were performed using a Particle Image Velocimetry (PIV) technique and dye visualization in an open water channel for a Reynolds number of Re = 5 × 103 based on the sphere diameter. The distributions and flow features at the critical locations of the contours of the velocity fluctuations, the patterns of sectional streamlines, the vorticity contours, the turbulent kinetic energy, the Reynolds stress correlations and shedding frequency are discussed. The gap ratios (G/D) of the three spheres were varied in the range of 1.0  G/D  2.5 where G was the distance between the sphere centers, and D was the sphere diameter which was taken as 30 mm. Due to the interference of the shedding shear layers and the wakes, more complex features of the flow patterns can be found in the wake region of the two downstream spheres behind the leading sphere. For G/D = 1.25, a jet-like flow around the leading sphere through the gap between the two downstream spheres occurred, which significantly enhanced the wake region. It was observed that a continuous flow development involving shearing phenomena and the interactions of shedding vortices caused a high rate of fluctuations over the whole flow field although most of the time-averaged flow patterns were almost symmetric about the two downstream spheres.  相似文献   

10.
Turbulent coherent structures near a rod-roughened wall are scrutinized by analyzing instantaneous flow fields obtained from direct numerical simulations (DNSs) of a turbulent boundary layer (TBL). The roughness elements used are periodically arranged two-dimensional spanwise rods, and the roughness height is k/δ = 0.05 where δ is the boundary layer thickness. The Reynolds number based on the momentum thickness is varied in the range Reθ = 300–1400. The effect of surface roughness is examined by comparing the characteristics of the TBLs over smooth and rough walls. Although introduction of roughness elements onto the smooth wall affects the Reynolds stresses throughout the entire boundary layer when scaled by the friction velocity, the roughness has little effect on the vorticity fluctuations in the outer layer. Pressure-strain tensors of the transport equation for the Reynolds stresses and quadrant analysis disclose that the redistribution of turbulent kinetic energy of the rough wall is similar to that of the smooth wall, and that the roughness has little effect on the relative contributions of ejection and sweep motions in the outer layer. To elucidate the modifications of the near-wall vortical structure induced by surface roughness, we used two-point correlations, joint weighted probability density function, and linear stochastic estimation. Finally, we demonstrate the existence of coherent structures in the instantaneous flow field over the rod-roughened surface.  相似文献   

11.
Numerical investigation is made for three-dimensional fluid flow and convective heat transfer from an array of solid and perforated fins that are mounted on a flat plate. Incompressible air as working fluid is modeled using Navier–Stokes equations and RNG based k ? ? turbulent model is used to predict turbulent flow parameters. Temperature field inside the fins is obtained by solving Fourier’s conduction equation. The conjugate differential equations for both solid and gas phase are solved simultaneously by finite volume procedure using SIMPLE algorithm. Perforations such as small channels with square cross section are arranged streamwise along the fin’s length and their numbers varied from 1 to 3. Flow and heat transfer characteristics are presented for Reynolds numbers from 2 × 104 to 4 × 104 based on the fin length and Prandtl number is taken Pr = 0.71. Numerical computations are validated with experimental studies of the previous investigators and good agreements were observed. Results show that fins with longitudinal pores, have remarkable heat transfer enhancement in addition to the considerable reduction in weight by comparison with solid fins.  相似文献   

12.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

13.
The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re = 2400 and jet-to-cross-flow velocity ratio of R = 3.3. The JICF flow case has been investigated in great detail, involving conduction of two independent precursor simulations, prior to the main JICF simulation, as the considered case has turbulent inflow conditions on both jet and cross-stream side. The LES results are directly compared to pointwise Laser Doppler Anemometry (LDA) measurements, showing a very good agreement on the level of various statistical quantities in all flow regions but the immediate jet-to-cross-flow exhaustion zone. Several LES computations involving grids of up to 15 million grid points have been conducted, showing no improvement in the agreement between numerical results and measurements, possibly indicating a LDA measurement problem in this particular region.  相似文献   

14.
Topological aspects of the turbulent wake of a finite, surface-mounted, square-cross-section cylinder of h/d = 4 are addressed by decomposing the velocity field into a quasi-periodic coherent part and the unresolved incoherent fluctuations. The three-dimensional large scale structure is educed through a reconstruction of planar phase-averaged PIV measurements using the simultaneously sampled surface pressure difference on opposing sides of the obstacle as a phase reference. A topological model for the vortex structure is educed and mean streamwise wake vorticity is explained in terms of the connections between initially vertical structures shed alternately from either side of the obstacle, rather than previously proposed ‘tip’ vortex structures generated at the obstacle free-end. The coherent structure educed accounts for a significant portion of the fluctuating energy in the wake. The turbulent field is further analyzed by finding Lagrangian straining structures that form by induction of the coherent vorticity field, and these structures are related to the energy transfer from the base phase-averaged flow since they act to stretch incoherent vorticity fluctuations in their neighbourhood.  相似文献   

15.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

16.
Experimental results for various water and air superficial velocities in developing adiabatic horizontal two-phase pipe flow are presented. Flow pattern maps derived from videos exhibit a new boundary line in intermittent regime. This transition from water dominant to water–gas coordinated regimes corresponds to a new transition criterion CT = 2, derived from a generalized representation with the dimensionless coordinates of Taitel and Dukler.Velocity, turbulent kinetic energy and dissipation rate, void fraction and bubble size radial profiles measured at 40 pipe diameters for JL = 4.42 m/s by hot film velocimetry and optical probes confirm this transition: the gas influence is not continuous but strongly increases beyond JG = 0.06 m/s. The maximum dissipation rate, derived from spectra, is increased in two-phase flow by a factor 5 with respect to the single phase case.The axial evolution of the bubble intercept length histograms also reveal the flow organization in horizontal layers, driven by buoyancy effects. Bubble coalescence is attested by a maximum bubble intercept evolving from 2.5 to 4.5 mm along the pipe. Turbulence generated by the bubbles is also manifest by the 4-fold increase of the maximum turbulent dissipation rate along the pipe.  相似文献   

17.
Fully developed, statistically steady turbulent flow in straight and curved pipes at moderate Reynolds numbers is studied in detail using direct numerical simulations (DNS) based on a spectral element discretisation. After the validation of data and setup against existing DNS results, a comparative study of turbulent characteristics at different bulk Reynolds numbers Reb = 5300 and 11,700, and various curvature parameters κ = 0, 0.01, 0.1 is presented. In particular, complete Reynolds-stress budgets are reported for the first time. Instantaneous visualisations reveal partial relaminarisation along the inner surface of the curved pipe at the highest curvature, whereas developed turbulence is always maintained at the outer side. The mean flow shows asymmetry in the axial velocity profile and distinct Dean vortices as secondary motions. For strong curvature a distinct bulge appears close to the pipe centre, which has previously been observed in laminar and transitional curved pipes at lower Reb only. On the other hand, mild curvature allows the interesting observation of a friction factor which is lower than in a straight pipe for the same flow rate.All statistical data, including mean profile, fluctuations and the Reynolds-stress budgets, is available for development and validation of turbulence models in curved geometries.  相似文献   

18.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

19.
The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 μm were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows.  相似文献   

20.
We present the effect of a magnetic field on three-dimensional fluid flow and heat transfer during solidification from a melt in a cubic enclosure. The walls of the enclosure are considered perfectly electrically conducting and the magnetic field is applied separately in three directions. The finite-volume method with enthalpy formulation is used to solve the mathematical model in the solid and liquid phases. The results obtained by our computer code are compared with the numerical and experimental data found in the literature. For Gr = 5 × 105 and Ha = 0, 25, 50, 75, and 100 (where Gr and Ha are the Grashof and Hartmann numbers, respectively), the effects of magnetic field on flow and thermal fields, and on solid/liquid interface shape are presented and discussed. The interface is localized with and without magnetic field. The results show a strong dependence between the interface shape and the intensity and orientation of magnetic field. When the magnetic field is applied along the X-direction, the magnetic stability diagrams (VmaxHa) and (NuavgHa) show the strongest stabilization of the flow field and heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号