首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K+ content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K+ content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.  相似文献   

2.
Proline (content) is closely with plant anti-drought, especially under soil water deficits. Many reports from crops and other plants have proved this. Wheat is the second important crop on the globe, whose research in this aspect of importance for food quality, safety, and yield in field. The related difference in physiological indicators and proline content for different soil water treatments among wheat with different genotypes is not clear, which has limited deep study of wheat anti-drought molecular biology and related anti-drought biotechnological breeding. Our current study was focused on the physiological relationship of proline and different genotype wheat anti-drought under soil water deficits. Main results showed that different wheat genotype had different soil water stress threshold. Pro content had closed relationship with soil water stress threshold and wheat anti-drought. Developmental course also impacted Pro content for different wheat genotypes.  相似文献   

3.
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, and moreover, about 60% of land area on the globe belongs to arid and semiarid zone. Wheat drought resistance is a multi-gene controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding, and the basis for wheat drought resistance biotechnological breeding and platform. Photosynthesis is the main component for physiological machinery of wheat assimilates conversion and wheat production. Investigation on photosynthetic characteristics of different wheat genotypes at soil water deficits also has other implications for refine physiological regulation of photosynthesis in fields and field management of crops in arid and semiarid areas. By pot-cultivating experiments, investigation of photosynthesis for 10 wheat genotypes at seedling stage and tillering stage at soil water deficits (75%FC, 55%FC and 45%FC, respectively) was conducted. The main results were as followed: developmental stages influenced wheat photosynthesis greatly and tillering stage played more roles; there were significant difference in the main photosynthetic parameters, photosynthesis rate (Photo), stomatal conductance (Cond) and transpiration rate (Tr), among 10 wheat genotypes; general photosynthesis and drought resistance in different wheat genotypes was related much to their domesticated origin soil water environment and selected generations and there was a photosynthetic threshold effect in terms of different wheat genotypes at soil water deficits.  相似文献   

4.
Drought is the major abiotic stress factor that causes extensive losses to agriculture production worldwide. The objective of this study was to evaluate the dynamics of photosynthesis and water-use efficiency parameters in 15 cowpea genotypes under well-watered and drought condition. Photosynthesis (A) and chlorophyll fluorescence (Fv'/Fm') declined linearly with decreasing soil water content whereas intrinsic water-use efficiency (WUE) increased under drought stress, suggesting stomatal regulation was a major limitation to photosynthesis. However, under increasing drought conditions, increase in ratio of intercellular CO(2) to ambient CO(2) concentrations along with reduced WUE showed the role of non-stomatal limitation of photosynthesis. The resistant nature of Fv'/Fm' and electron transport rate under drought appeared to be important mechanisms for photoinhibition protection under drought stress. Oxidative stress was apparent due to drought-induced reduction in total chlorophyll and carotenoid which was accompanied with increased leaf wax contents. The accumulation of proline appeared to be in response of drought injury rather than a drought tolerance mechanism. A clear separation based on the genotypes site of origin among the genotypes for drought tolerance could not be established when analyzed using principal component analysis. The identified genotypes and physiological traits from this study may be useful for genetic engineering and breeding programs integrating drought adaptation in cowpea.  相似文献   

5.
磷素营养对植物抗旱性的影响   总被引:13,自引:0,他引:13  
综述了近年来磷素营养与植物抗旱性关系的研究进展,指出磷素营养主要通过水分调节、渗透调节、光合调节和根冠生长等一系列生理生长机制来增强植物的代谢活性,提高植物抗旱性,植物对磷的利用效率与抗旱性也有着密切的关系。  相似文献   

6.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   

7.
A pot culture experiment was conducted to estimate the drought stress mitigating effect of ketoconazole (KCZ), a fungicide cum plant growth regulator, in Catharanthus roseus plants. The plants under pot culture were subjected to drought stress and drought stress with KCZ from 30 days after sowing (DAS) and regular irrigation was kept as control. Antioxidant contents and activities of antioxidant enzymes were estimated from root, stem and leaf of both control and treated plants. The alkaloid ajmalicine was extracted and estimated from the roots of control, drought stressed and KCZ treated plants. Individual and combined drought stress and KCZ treatments increased ascorbic acid, -tocopherol contents, superoxide dismutase, ascorbate peroxidase, catalase and polyphenol oxidase activities when compared to control. There was a significant enhancement in ajmalicine production under KCZ treated plants under drought stress when compared to well watered control as well as drought stressed plants. The KCZ treatment resulted in partial mitigation of drought stress by increasing the antioxidant potentials in C. roseus plants.  相似文献   

8.
Abstract— Plastic mulches are widely used to conserve water and control weeds with less applied herbicides in production of food crops. Both yield and quality are important and can be affected by reflected blue (B), red (R) and far-red (FR) light combinations received during growth and development. Photosynthate allocation among growing plant parts and flavor of edible roots were studied in turnip ( Brassica rapa L.) grown in trickle-irrigated field plots with blue, green and white mulches. The blue and green mulches reflected different amounts of B, but they both reflected FR/R ratios higher than the ratio in incoming sunlight. The white mulch reflected more photosyn-thetic light and a lower FR/R ratio than the blue or green mulches. Plants grown with blue and green mulches did not differ significantly in leaf length, root size and shoot/ root biomass ratio. Those grown with white had shorter leaves and larger roots. Taste testers found that plants grown with blue mulch developed roots with a sharp flavor, and roots from plants grown with green mulch had a mild flavor. Those grown with white had a less distinct flavor. Roots grown with blue mulch had the greatest concentrations of total glucosinolates (GSL) and ascorbic acid. Reducing sugar concentrations were higher in roots grown with green than in those grown with blue mulches. The comparison of chemical composition of roots from plants grown with blue versus green mulches is important because the main difference was the amount of reflected B, suggesting that B influenced an enzyme involved in the pathway from glucose to GSL. We conclude that the spectrum of light reflected from mulch on the soil surface can influence not only shoot/root biomass ratio but also flavor-related chemical composition of field-grown food crop plants.  相似文献   

9.
10.
The present investigation was conducted to determine whether CaCl(2) increases Catharanthus roseus drought tolerance and if such tolerance is correlated with changes in oxidative stress, osmoregulation and indole alkaloid accumulation. C. roseus plants were grown under water deficit environments with or without CaCl(2). Drought induced oxidative stress was measured in terms of lipid peroxidation (LPO) and H(2)O(2) contents, osmolyte concentration, proline (PRO) metabolizing enzymes and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress and drought stress with 5mM CaCl(2) and 5mM CaCl(2) alone from 30 days after planting (DAP) and regular irrigation was kept as control. The plants were uprooted on 41 DAS (10 DID), 46 DAS (15 DID) and 51 DAS (20 DID). Drought stressed plants showed increased LPO, H(2)O(2), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) activity and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl(2) to drought stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl(2) appears to confer greater osmoprotection by the additive role with drought in GB accumulation. The drought with CaCl(2)-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to drought stressed and well-watered plants.  相似文献   

11.
Cowpea (Vigna unguliculata Walp) is considered one of the most drought resistant species among the pulse crops. It was suggested that in the lower part of the stem, parenchymatous tissue for storing water has been developed for the function of drought resistance. However, such tissue has not been identified yet. In order to identify the water storing tissue in the stem of cowpea plant, the authors performed neutron radiography, which provides a non-destructive image of water distribution pattern in a plant. Common bean plant and soybean plant were used as references. Comparing the neutron radiograph for the stems of the plants, i.e., cowpea, common bean and soybean plants, the parenchymatous tissue with water storing function was distinguished in the intermode between primary leaf and the first trifoliate leaf specifically in cowpea plant.  相似文献   

12.
Catharanthus roseus (L.) G. Don plants were grown in different water regimes in order to study the drought induced osmotic stress and proline (PRO) metabolism, antioxidative enzyme activities and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress from 30 days after sowing (DAS) and regular irrigation was kept as control. The plants were uprooted on 41 DAS (10 DID), 46 DAS (15 DID) and 51 DAS (20 DID). The drought stressed plants showed increased aminoacid (AA), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) and increased γ-glutamyl kinase (γ-GK) activities when compared to control. The antioxidative enzymes like peroxidase (POX) and polyphenol oxidase (PPO) increased to a significant level in drought stressed plants when compared to control. The drought stressed C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to well-watered control plants. Our results suggest that the cultivation of medicinal plants like C. roseus in water deficit areas would increase its PRO metabolism, osmoregulation, defense system and the level of active principles.  相似文献   

13.
Today, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants. The present work aims to develop a noninvasive methodology for living plant based on nuclear magnetic resonance (NMR) at low magnetic field and imaging (MRI) to tackle the issue of water quantity in plants. For this purpose, a portable NMR device measuring the signal level at 8 mT was built. This instrument addresses specific challenges such as miniaturization, accessibility, and overheating in order to maintain the plant intact of time over long period. Time dependence of the water content in sorghum plants is reported under abiotic stress as well as the fraction of transpirable soil water and the photosynthesis activity through the leaves. At high magnetic field (9.4 T), T2 maps were acquired on the same sorghum plants at two time points. The combination of these approaches allows us to identify ecophysiological biomarkers of drought stress. One particular interesting result concerns the spatial distribution of water in two anatomically contrasted sorghum genotypes.  相似文献   

14.
Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-beta glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active form.  相似文献   

15.
Two physiological tests for screening drought tolerance of barley (Hordeum vulgare, L.) plants are compared in this work. Water deficit is induced by treating the plants' roots with polyethylene glycol (PEG 8000). The relative water content (RWC) of the plants is used as a measure of the water status. Conductometrically determined electrolyte leakage from the leaf tissue demonstrates the membrane injury caused by dehydration. It is shown that the injury index increases with the decrease of the RWC of the leaves. The F(v)/F(m) ratio is employed to assess changes in the primary photochemical reactions of the photosynthetic apparatus after dehydration. The results suggest that PSII is weakly affected by the imposed osmotic stress. The fluorescence behaviour of the examined cultivars is related to their RWC.  相似文献   

16.
Crop production on acid soil is markedly reduced, further, a multiple heavy metal pollution except Al on acid soil is detected in many areas. The present study was undertaken to assess the toxicities of Al, Cd, and Cu separately and in combinations, three heavy metals very often coexisting on acid soil, and to identify their interactions in two kinds of barley seedlings differing in Al tolerance. The plant growth, metals accumulations, total soluble protein and sugar contents, MDA contents and the activities of SOD and POD were estimated in roots and leaves after 5-week supply of the heavy metals excess in the nutrient solution. The results indicated that the stress treatments including low pH (pH 4.5) alone all adversely affected plant growth and disturbed the cell metabolism seriously. The development of toxic symptoms corresponded to a high accumulation of Al, Cd, Cu and to a poor increase in soluble sugar contents but to a high increase in MDA contents, to the decrease in soluble protein contents and to the much elevated SOD and POD activities in both roots and leaves. In addition, binary metal combinations of Al + Cd and Al + Cu both produced the synergistic response for the growth of barley seedlings, in particular for Shang 70-119, while, ternary metal combination of Al + Cu + Cd produced different interactions in two kinds of genotypes, thus, the significant synergistic response was seen in Shang 70-119, but the antagonistic response was detected in Gebeina. The different responses to ternary metal combination of two genotypes may result from the different metal bioaccumulation patterns, hence, the existence of Cd and Cu promoted Al accumulation in Shang 70-119 but inhibited Al accumulation in Gebeina.  相似文献   

17.
This work reports the development and application of a negative ion mode online LC-ESI-MS method for studying the effect of water deficit on the carbohydrate content of Lupinus albus stems, using a porous graphitic carbon (PGC) stationary phase and an ion trap mass spectrometer. Using this method, separation and detection of several water soluble carbohydrates, ranging from mono-, di-, and oligosaccharides (raffinose, stachyose, and verbascose) to sugar alcohols was achieved in approximately 10 min. This on-line PGC-LC-ESI-MS method shows good linearity with correlation coefficients R(2)>0.99, selectivity, short analysis time, and limits of detection (LOD) ranging from 0.4 to 9 pmol for sugars and 4-20 pmol for sugar alcohols. This PGC-LC-ESI-MS method is sensitive and allowed us to detect even small alterations in carbohydrate levels in L. albus stems that resulted from a mild/early water deficit (nmol g(-1)DW). This paper describes details of our method and its application to the quantitative analysis of water soluble underivatised carbohydrates extracted from L. albus stem tissues that have been subjected to early and severe water deficit conditions, followed by a rewatering period.  相似文献   

18.
19.
Fluorogenic click chemistry has recently emerged as an ingenious and powerful tool toward numerous biochemical purposes. We describe herein the use of dual click chemistry toward the fluorescence restoration of a fluorogenic coumarin on epimeric dipropargyl sugar scaffolds and their practical utility in selective metal ion detection. The dual click reactions were smoothly proceeded under microwave irradiation between silylated 3,4-di-O-propynyl gluco- or galactoside and 3-azidocoumarin, forming fluorescently reactivated bis-triazolocoumarins on sugar templates. Subsequent desilylation resulted in the OH-glycosides with desired water solubility. The following photochemical study disclosed that their fluorescence could be uniquely quenched by silver(I) in aqueous media with very minor responses to the addition of other metal ions. This research would presumably prompt the efficient creation of water soluble and potentially low toxic chemosensors via the fluorogenic dual click chemistry in using the universally existent sugars as the central scaffold.  相似文献   

20.
REE bound polysaccharides in leaves of Dicranopteris dichotoma by MAA   总被引:2,自引:0,他引:2  
Inrecentdecades,thephysiologicalfunctionofREEsandtheirsignificanceonlivingbeingsaswellastheirlongtermbiologicaleffectsonbodiesoflivingbeingshavedrawngreatattention.accompaniedbytheextensiveapplicationofREEsinagriculture,modernindustryandmedicine.Howeve…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号