首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The conformational energies, rotational barrier heights and molecular structures in C(CH2X)4 molecules (X=F, Cl, Br) based on molecular-mechanics calculations have been obtained. The results from these calculations are compared with the experimental gas-phase results.  相似文献   

2.
The gas-phase structures and energetics of both protonated arginine dimer and protonated bradykinin were investigated using a combination of molecular mechanics with conformational searching to identify candidate low-energy structures, and density functional theory for subsequent minimization and energy calculations. For protonated arginine dimer, a good correlation (R = 0.88) was obtained between the molecular mechanics and EDF1 6-31+G* energies, indicating that mechanics with MMFF is suitable for finding low-energy conformers. For this ion, the salt-bridge or ion-zwitterion form was found to be 5.7 and 7.2 kcal/mol more stable than the simple protonated or ion-molecule form at the EDF1 6-31++G** and B3LYP 6-311++G** levels. For bradykinin, the correlation between the molecular mechanics and DFT energies was poor (R = 0.28), indicating that many low-energy structures are likely passed over in the mechanics conformational searching. This result suggests that structures of this larger peptide ion obtained using mechanics calculations alone are not necessarily reliable. The lowest energy structure of the salt-bridge form of bradykinin is 10.6 kcal/mol lower in energy (EDF1) than the lowest energy simple protonated form at the 6-311G* level. Similarly, the average energy of all salt-bridge structures investigated is 13.6 kcal/mol lower than the average of all the protonated forms investigated. To the extent that a sufficient number of structures are investigated, these results provide some additional support for the salt-bridge form of bradykinin in the gas phase.  相似文献   

3.
A computational study by combining molecular dynamics simulations with density functional theory calculations has been conducted on two unnatural octapeptides, Boc-[Aib-β3(R)Val]4-OMe and Boc-[Aib-α(S)Val]4-OMe, and the corresponding infinite one-dimensional chains to understand their inherent structural preferences and the effect of the crystal environment on their structures. For both systems, we have determined their gas-phase lowest energy conformers, which possess hybrid helical structures (not pure α-helix-like or 310-helix-like). For Boc-[Aib-β3(R)Val]4-OMe, our calculations show that the corresponding infinite polypeptide has an α-helix-like structure as the most stable structure. This result is in accord with the experimental crystal structure. For Boc-[Aib-α(S)Val]4-OMe, our calculations show that the infinite polypeptide will exist in 310-helix-like structure, which is also consistent with the observed crystal structure. The present study demonstrates that the peptide conformer in the crystal environment does not necessarily correspond to the most stable structure in vacuum.  相似文献   

4.
Hydrogen bonding and halogen bonding are important non-covalent interactions that are known to occur in large molecular systems, such as in proteins and crystal structures. Although these interactions are important on a large scale, studying hydrogen and halogen bonding in small, gas-phase chemical species allows for the binding strengths to be determined and compared at a fundamental level. In this study, anion photoelectron spectra are presented for the gas-phase complexes involving bromide and the four chloromethanes, CH3Cl, CH2Cl2, CHCl3, and CCl4. The stabilisation energy and electron binding energy associated with each complex are determined experimentally, and the spectra are rationalised by high-level CCSD(T) calculations to determine the non-covalent interactions binding the complexes. These calculations involve nucleophilic bromide and electrophilic bromine interactions with chloromethanes, where the binding motifs, dissociation energies and vertical detachment energies are compared in terms of hydrogen bonding and halogen bonding.  相似文献   

5.
 2-(Acetylamino)fluorene (AAF), a potent mutagen and a prototypical example of the mutagenic aromatic amines, forms covalent adducts to DNA after metabolic activation in the liver. A benchmark study of AAF is presented using a number of the most widely used molecular mechanics and semiempirical computational methods and models. The results are compared to higher-level quantum calculations and to experimentally obtained crystal structures. Hydrogen bonding between AAF molecules in the crystal phase complicates the direct comparison of gas-phase theoretical calculations with experiment, so Hartree–Fock (HF) and Becke–Perdew (BP) density functional theory (DFT) calculations are used as benchmarks for the semiempirical and molecular mechanics results. Systematic conformer searches and dihedral energy landscapes were carried out for AAF using the SYBYL and MMFF94 molecular mechanics force fields; the AM1, PM3 and MNDO semiempirical quantum mechanics methods; HF using the 3-21G*and 6-31G* basis sets; and DFT using the nonlocal BP functional and double numerical polarization basis sets. MMFF94, AM1, HF and DFT calculations all predict the same planar structures, whereas SYBYL, MNDO and PM3 all predict various nonplanar geometries. The AM1 energy landscape is in substantial agreement with HF and DFT predictions; MMFF94 is qualitatively similar to HF and DFT; and the MNDO, PM3 and SYBYL results are qualitatively different from the HF and DFT results and from each other. These results are attributed to deficiencies in MNDO, PM3 and SYBYL. The MNDO, PM3 and SYBYL models may be unreliable for compounds in which an amide group is immediately adjacent to an aromatic ring. Received: 26 May 2002 / Accepted: 12 December 2002 / Published online: 14 February 2003  相似文献   

6.
A novel algorithm for computing the water/1-octanol partition coefficient, log P , of conformationally flexible molecules, has been investigated using calculations upon a number of uncharged, linear dipeptides. In this method (which appears to be the first to consider explicitly the effects of the population of accessible conformational minima in both phases), the partition coefficient for each dipeptide was calculated from the overall energy change associated with moving the relevant gas-phase conformational distribution into water and into 1-octanol. These energies were computed using solvation contributions based upon the solvent accessible molecular surface area and two sets of empirical parameters. In these initial studies, gas-phase conformational minima were generated using systematic search methods. While the standard error in the computed log P values was disappointing, reasonable agreement was observed between calculated and experimental log P values for the set of model dipeptides, especially when specific hydration interactions involving polar fragments were correctly included in the empirical solvation term. These results indicate that the physical basis of many correction factors employed in the ClogP algorithm for computing log P probably arise from neglect of the redistribution of conformer populations as flexible molecules partition between water and 1-octanol.  相似文献   

7.
The charge distribution of taurine (2-aminoethane-sulfonic acid) is revisited by using an orbital-based method that describes the density in a fixed molecular orbital basis with variable orbital occupation numbers. A new neutron data set is also employed to explore whether this improves the deconvolution of thermal motion and charge density. A range of molecular properties that are novel for experimentally determined charge densities are computed, including Weinhold population analysis, Mayer bond orders, and local kinetic energy densities, in addition to charge topological analysis and quantum theory of atoms-in-molecules (QTAIM) integrated properties. The ease with which a distributed multipole analysis can be performed on the fitted density matrix makes it straightforward to compute molecular moments, the lattice energy, and the electrostatic interaction energies of molecules removed from the crystal. Results are compared with high-level (QCISD) gas-phase calculations and band structure calculations employing density functional theory. Finally, the avenues available for extending the range of molecular properties that can be calculated from experimental charge densities still further using this approach are discussed.  相似文献   

8.
Nucleophilic substitution of F atoms in 5,6‐difluorobenzo[c ][1,2,5]thiadiazole (DFBT) for carbazole could be potentially interesting as a novel way of synthesizing building blocks for new conjugated materials for applications in organic chemistry. The crystal structures of 5,6‐bis(9H‐carbazol‐9‐yl)benzo[c ][1,2,5]thiadiazole (DCBT), C30H18N4S, and its hydrate, C30H18N4S·0.125H2O, were investigated using single‐crystal X‐ray analysis. The hydrate contains two symmetry‐independent DCBT molecules. The dihedral angles between the plane of the central benzothiadiazole fragment and that of the carbazole units vary between 50.8 and 69.9°, indicating conformational flexibility of the DCBT molecule in the crystals, which is consistent with quantum chemical calculations. The analysis of the crystal packing of DCBT revealed that the experimental triclinic structure could be described as a distortion from a hypothetical higher‐symmetry monoclinic structure. The quantum chemical calculations of two possible monoclinic structures, which are related to the experimental structure by a shifting of molecular layers, showed that the proposed structures are higher in energy by 5.4 and 10.1 kcal mol−1. This energy increase is caused by less dense crystal packings of the symmetric structures, which results in a decrease of the number of intermolecular interactions.  相似文献   

9.
The molecular structure and conformational properties of structurally related oxo and thio heteroarotinoids have been calculated by employing AM1 molecular orbital and both MM2P and Chem-X “optimize” molecular mechanics methods, and the results have been compared with crystal structure data. For the cis and trans oxo heteroarotinoids, MM2P gives values of the bridge torsion angles ?1 and ?2 in closest agreement with the crystal structure, and all three computational methods yield values of ?1 and ?2 within about 10° of that found in the crystal structures. All three computational methods locate a minimum-energy conformation for the trans isomer corresponding to the two bridged aryl rings being mutually perpendicular, in agreement with the crystal structure and similar to that found for the structurally analogous trans-stilbene. The calculated heteroring geometries also reproduce the twist-sofa conformation observed for the crystal structure. Calculated conformational energies versus ?1 and ?2 indicate broad energy wells about the minimum-energy conformation with barriers to rotation at the planar and perpendicular conformations, and with higher barriers found for the more sterically congested cis isomer. The corresponding cis and trans thio heteroarotinoids exhibit conformational properties similar to their oxo analogues. Both AM1 and MM2P fare poorly in reproducing the crystal structure values of the sulfur-containing bond lengths and bond angles. The C-S bonds found in these thio heteroarotinoids may possess more double-bond character than accounted for in the calculations. Also, the results suggest that the MM2P sulfur-related force-field parameters adopted for these calculations may require further refinement.  相似文献   

10.
The conformational energies of 1-amino-2-propanol, 2-amino-1-propanol and 1,2-diaminopropane are studied using ab initio molecular orbital theory employing minimal (STO-3G) and extended (4-31G) basis sets. Calculations at both levels of theory generally favor conformations stabilized by internal H-bonding for all molecules considered. Results are first presented for conformations employing assumed geometries. Since the conformational energy differences as found by the initial set of calculations are in some cases rather small it then becomes necessary to introduce geometry optimizations into the study at the minimal STO-3G level. In addition, to get a better estimate of the energy differences of the various conformations 4-31G calculations are performed on the STO-3G optimized structures. These latter results indicate the following, (a) For 1-amino-2-propanol only one conformation that is stabilized by intramolecular H-bonding is low in energy; this has the methyl and amino groups anti. The other H-bonded conformer, where the methyl and amino groups are gauche, is predicted to be ca. 1.2 kcal mol?1 less stable. Similar findings for this molecule have recently been provided by micro-wave spectroscopy. (b) For 2-amino-1-propanol the two H-bonded conformers are only separated by about 0.5 kcal mol?1, with the anti conformer being more stable. Micro-wave spectroscopy again supports these calculations. (c) For 1,2-diaminopropane the gauche conformer is predicted to be of rather high energy (ca. 2.5 kcal mol?1) compared to the corresponding anti H-bonded conformer. The value of 2.5 kcal mol?1should be taken as an upper limit, since the geometry optimization of the gauche conformer of 1,2-diaminopropane is incomplete compared to the optimization carried out for the anti conformer.  相似文献   

11.
12.
A conformational analysis has been performed on the isolated chains of copolymers of tetrafluoroethylene with hexafluoropropene, chlorotrifluoroethylene or perfluoromethyl vinyl ether, in comparison with polytetrafluoroethylene. The lowest energy conformations in accordance with the chain repeating distance of polytetrafluoroethylene in the low temperature crystal phase have been used in packing energy calculations. The results of both conformational and packing energy calculations suggest that the  Cl group is easily tolerated in the crystal phase. The —CF3 group could also be tolerated in the crystal phase but at the cost of conformational and crystal lattice deformations. On the contrary, it can be concluded that the —OCF3 group is excluded from the crystal phase because its presence should require high energy values and wide deformations in the unit cell parameters.  相似文献   

13.
The discovery of molecular ionic cocrystals (ICCs) of active pharmaceutical ingredients (APIs) widens the opportunities for optimizing the physicochemical properties of APIs whilst facilitating the delivery of multiple therapeutic agents. However, ICCs are often observed serendipitously in crystallization screens and the factors dictating their crystallization are poorly understood. We demonstrate here that mechanochemical ball milling is a versatile technique for the reproducible synthesis of ternary molecular ICCs in less than 30 min of grinding with or without solvent. Computational crystal structure prediction (CSP) calculations have been performed on ternary molecular ICCs for the first time and the observed crystal structures of all the ICCs were correctly predicted. Periodic dispersion-corrected DFT calculations revealed that all the ICCs are thermodynamically stable (mean stabilization energy=−2 kJ mol−1) relative to the crystallization of a physical mixture of the binary salt and acid. The results suggest that a combined mechanosynthesis and CSP approach could be used to target the synthesis of higher-order molecular ICCs with functional properties.  相似文献   

14.
Two novel X-ray structures of the sulfonic ester derivatives 2-(6-iodo-1,3-benzodioxol-5-yl)ethyl 4-nitrobenzenesulfonate, 3, and 2-(6-iodo-1,3-benzodioxol-5-yl)ethyl 4-methylbenzenesulfonate, 4, have been obtained in a study aimed at analyzing the structures and conformations of sulfonic ester derivatives that are routinely used in alkaloid syntheses. The crystal structure of 4 is highly unusual, containing four independent molecules that belong to two distinct conformational types: (1) a hairpin conformation (stabilized mainly by intramolecular pi-stacking) and (2) a stepped conformation (stabilized mainly by intermolecular pi-stacking). Compound 3, on the other hand, crystallizes exclusively as the hairpin conformer. New MM+ force field parameters for sulfonic esters have been developed using the X-ray data, empirical rules, and DFT calculations to estimate the bond dipole parameters. Grid searches of conformational space for 3 and 4 using MM methods show that there are several gas-phase conformations within 5 kcal/mol of the global minimum and that the lowest energy conformations (by approximately 4.6 kcal/mol) are of the hairpin type. Analysis of the MM conformational energies suggests that the dominant intramolecular interaction stabilizing the hairpin conformations of 3 and 4 is van der Waals attraction. Moreover, the lattice energies for packing the hairpin conformations of 3 and 4 are approximately 4 kcal/mol more favorable than for the stepped conformations. Various intermolecular interactions contribute to the complexity of the observed crystal structures of 3 and 4, including electrostatic attraction between O and I atoms in neighboring molecules. Langevin dynamics (LD) simulations at several temperatures (6.0 ns, friction coefficient = 2.5 ps(-1)) indicate that the conformational exchange rates are approximately 10(10)-10(11) s(-1) over the temperature range 213-400 K, accounting for the temperature-independent (1)H NMR spectra of 3 and 4.  相似文献   

15.
We present the application of several homo- and heteronuclear 1D- and 2D-NMR techniques to assign the 1H-NMR chemical shifts of the dominant conformation of didemnin B ( 2 ; three different conformations in (D6)DMSO solution in the ratio 8:1:1) and its conformational analysis, as well as the solution conformation of didemnin A ( 1 ). The conformations were refined by restrained molecular-dynamics calculations using the GROMOS program and by MOMO, a novel personal-computer-based interactive molecular-graphics and molecular-mechanics package, using experimental distances (via a H…H pseudo potential function) as restraints. The solution structures of 1 and 2 obtained by GROMOS and MOMO calculations were compared with each other and related to the recently solved crystal structure of 2 . Focusing on the main conformer, the two kinds of the distance-restrained conformational calculations for 2 yielded a ‘solution structure’ close to the crystal structure. Almost all of the 40 restrained H…H distances coincided (within the estimated standard deviations) with those observed in the crystal structure. One more hydrogen bond was detected in solution involving the lactoyl OH group (disordered in the crystal structure) and the dimethyltyrosine (Me2Tyr5) carbonyl O-atom. The macrocyclic ring system in the modeled solution structure of 1 exhibited a topology close to those of the solution and crystal structures of 2 . The main difference between 1 and 2 could be traced back to a significant change in the Ψ angle of the N-methyl-D-leucine (MeLeu7) residue. In 1 , the N-methyl moiety of MeLeu7 points inward within the macrocyclic ring toward the 1st and Hip region. We also tested the suitability of structures obtained from NMR data as ‘search fragments’ in the ‘Patterson search approach’ of crystal-structure analysis. It proved possible to resolve the crystal structure of 2 a posteriori with the Patterson search program PATSEE, in this way.  相似文献   

16.
Small molecule neurotransmitters form one the most important classes of pharmaceutical molecules. While the behavior of these molecules in their neutral forms in the gas phase is well understood, their behavior in more biologically relevant scenarios (protonated and in aqueous solution) has received comparatively little attention. Here we address this problem by using molecular mechanics simulations to build up a detailed picture of the conformational behavior of 2-amino-1-phenylethanol, a noradrenaline analogue, in aqueous solution in both its neutral and protonated forms. For the sake of comparison, equivalent simulations are also performed on the gas-phase molecules and gas-phase hydrated clusters. These calculations reveal the important role that water has to play in determining the conformational preferences and dynamic behavior of the molecules. Water molecules are found to bridge between the various functional groups within the molecule, significantly affecting their relative stabilities in comparison to the gas-phase values. The reorganization of these solvation structures also provides a mechanism for conformational interconversion. The role of the solvent in mediating interactions between the various functional groups within the molecule suggests that in noradrenaline the catechol groups will be able to interact, albeit indirectly, with the other functional groups, thereby influencing the behavior of the molecule.  相似文献   

17.
Isothiocyanate complexes of Zn(II) and Cd(II) with the condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized, characterized, and their antimicrobial activities were evaluated. The structures of the complexes were determined by elemental analysis, IR, and NMR spectroscopy. The crystal structure of the Zn(II) complex was also determined. Quantum-chemical calculations of the geometry and total energy of isomers of 2,6-diacetylpyridine-bis(trimethylammoniumacetohydrazone) were performed in vacuum and methanol solution, with the aim to explain conformational behavior and E/Z isomerism of this compound. DFT calculations of the molecular structures and the relative stabilities of linkage isomers of the Cd(II) complex showed that the isomer with N–Cd–N coordination of SCN? is the most stable. Complexes of Zn(II) and Cd(II) exhibited low to moderate activity against the tested microbial strains.  相似文献   

18.
Abstract

X-ray crystallography, quantum-chemical calculations and conformational analysis have been employed to study chlorophenyl(piperazinylalkyl)phthalimides, potential ligands of 5-HT1A receptor. The molecular recognition of investigated compounds by 5-HT1Aserotonin receptor has been estimated according to their ability to inhibit the [3H8]-DPAT binding. The model for 5-HT1A pharmacophore has been proposed based on crystal structures of N-(aryl)piperazinyl — alkylphthalimides.  相似文献   

19.
Quantum mechanical calculations of the geometric, energetic, electronic, and vibrational features of a transition structure for gas-phase water–formaldehyde addition (FW1?) are described, and a new transition-structure search algorithm is presented. Basis-set-dependent effects are assessed by comparisons of computed properties obtained from self-consistent field (SCF) molecular orbital (MO) calculations with STO-3G, 4-31G, and 6-31G** basis sets in the absence of electron correlation. The results obtained suggest that STO-3G-level calculations may be sufficiently reliable for the prediction of the transition structure of FW1? and for the transition structures of related carbonyl addition reactions. Moreover, the calculated activation energy for formation of FW1? from water and formaldehyde (?44 kcal mol?1) is very similar in all three basis sets. However, the energy of formaldehyde hydration predicted by STO-3G (? ?45 kcal mol?1) is about three times larger than that predicted by the other two basis sets, with the activation energy for dihydroxymethane dehydration also being too large in STO-3G. Calculated force constants in all three basis sets are generally too large, leading to vibrational frequencies that are also too large. However, uniformly scaled force constants (in internal coordinates) give much better agreement with experimental frequencies, scaled 4-31G force constants being slightly superior to scaled STO-3G force constants.  相似文献   

20.
Experimental measurements of edge-to-face aromatic interactions have been used to test a series of molecular mechanics force fields. The experimental data were determined for a range of differently substituted aromatic rings using chemical double mutant cycles on hydrogen-bonded zipper complexes. These complexes were truncated for the purposes of the molecular mechanics calculations so that problems of conformational searching and the optimisation of large structures could be avoided. Double-mutant cycles were then carried out in silico using these truncated systems. Comparison of the experimental aromatic interaction energies and the X-ray crystal structures of these truncated complexes with the calculated data show that conventional molecular mechanics force fields (MM2, MM3, AMBER and OPLS) do not perform well. However, the XED force field which explicitly represents electron anisotropy as an expansion of point charges around each atom reproduces the trends in interaction energy and the three-dimensional structures exceedingly well. Collapsing the XED charges onto atom centres or the use of semi-empirical atom-centred charges within the XED force field gives poor results. Thus the success of XED is not related to the methods used to assign the atomic charge distribution but can be directly attributed to the use of off-atom centre charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号