首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A series of new side chain cholesteric liquid crystalline polysiloxanes was synthesized by grafting copolymerization of a mesogenic monomer (M1) and a chiral monomer (M2). The chemical structures of the monomers and polymers obtained were confirmed by FTIR, and 1H and 13C NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the content of the chiral unit on phase behaviour of the polymers is discussed. Monomer M1 showed nematic and smectic phases on cooling. The polymers P1 and P2 showed a nematic phase, P3-P5 showed cholesteric Grandjean texture, and P6 and P7 exhibited smectic short-rod texture. The polymers containing more than 7.2 mol % and less than 28.6 mol % of the chrial unit showed an induced cholesteric phase. Experimental results demonstrated that the glass transition, melting and clearing temperatures decreased with increasing content of the chiral unit.  相似文献   

2.
A series of liquid crystalline homopolysiloxanes and copolysiloxanes were synthesized. The chemical structures of the monomers M1-M7 were confirmed by FTIR and 1H NMR spectroscopy. The structure-property relationships of the monomers and polymers are discussed; their phase behaviour and optical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and polarizing optical microscopy. All the monomers, except M2 and M7 showed smectic and nematic phases; the copolymers P8-P15 displayed cholesteric phases. The homopolymers P1-P7 exhibited smectic phases. The selective reflection of cholesteric monomers and copolymers shifted to longer wavelengths with increasing length of the rigid mesogenic core, with decreasing length of the flexible spacer, or with increasing content of nematic units. Experimental results demonstrated that a flexible polymer backbone, a rigid mesogenic core and a long flexible spacer tended to produce a lower glass transition temperature, higher thermal stability, and wider mesophase temperature range.  相似文献   

3.
A series of new chiral smectic liquid crystalline elastomers was prepared by graft polymerization of a nematic monomer with a chiral and non-mesogenic crosslinking agent, using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H NMR. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X-ray diffraction. Monomer M1 showed a nematic phase during heating and cooling. Polymer P0 exhibited a smectic B phase; elastomers P1-P3 showed the smectic A phase, P4-P6 showed a chiral smectic C(SmC*), and P7 displayed stress-induced birefringence. Elastomers containing less than 15 mol % M2 displayed elasticity, reversible phase transitions with wide mesophase temperature ranges, and high thermal stability. With increasing content of the crosslinking unit, glass transition temperatures first increased, then fell, then increased again; isotropization temperatures and mesophase temperature ranges steadily decreased.  相似文献   

4.
A series of new side chain cholesteric liquid crystalline elastomers (P-2-P-6) containing the nematic crosslinking monomer 4-(10-undecen-1-yloyloxy)benzoyl-4'-allyloxybenzoyl-p-benzenediol bisate (M-1) and the cholesteric monomer 4-cholesteryl 4-(10-undecen-1-yloyloxy)benzoate (M-2) were synthesized. The chemical structures of the monomers and elastomers obtained were confirmed by FTIR and 1H NMR spectroscopy. Their liquid crystalline properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The effect of the crosslinking units on phase behaviour is discussed. Elastomers containing less than 20 mol % of the crosslinking units showed elasticity, reversible phase transitions and cholesteric Grandjean texture. The experimental results demonstrated that the glass transition and isotropization temperatures of P-2-P-6 increased with the increasing concentration of crosslinking unit M-1.  相似文献   

5.
In this work the new-style nematic monomer M1 , chiral crosslinking reagent MC and a series of new side-chain cholesteric liquid crystalline elastomers derived from M1 and MC were prepared. The effect of the content of the chiral crosslinking unit on phase behaviour of the elastomers has been discussed. Polymer P1 showed nematic phase, P2 P7 showed cholesteric phase, P3 formed Grandjean texture in the heating cycle and turned out a blue Grandjean texture in the cooling cycle, P2 P3 with less than 6 mol% of chiral crosslinking agent gave rise to selective reflection. The elastomers containing less than 15 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. Experimental results demonstrated that the glass transition temperatures reduced first and then increased, and the isotropisation temperatures and the mesophase temperature ranges decreased with increasing content of crosslinking unit.  相似文献   

6.
A mesogenic crosslinking agent M-1 was synthesized to minimize the perturbations of non-mesogenic crosslinking agents in liquid crystalline elastomers. The synthesis of new side chain liquid crystalline elastomers containing the rigid mesogenic crosslinking agent M-1 and nematic monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the monomers and network polymers obtained were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the crosslinking units on phase behaviour is discussed. Liquid crystalline elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transitions and a threaded texture. The experimental results demonstrated that the glass transition temperature of polymers P-1-7 increased with increasing concentration of crosslinking agent M-1; but the isotropic temperature and liquid crystalline range decreased slightly.  相似文献   

7.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

8.
A phosphorus-containing monomer (10-oxo-10-hydro-9-oxa-10λ5-phospha-phenanthrene-10-yl)-methyl acrylate (M1) was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. The structures of monomer and copolymer were characterized by FT-IR and 1H NMR measurements. The reactivity ratios for free-radical of the monomer (M1) and styrene (M2) were studied. The calculated results are as follows:r1=0.225, r2=0.503; Q1=0.413, e1=0.476; azeotropic point=0.37. TGA and DTG curves indicated that M1 is a potential flame retarding monomer for styrenic polymers.  相似文献   

9.
New monomer cholesteryl 4-(10-undecylen-1-yloxybenzoyloxy)-4′-ethoxybenzoate (M1), crosslinking agent biphenyl 4,4′-bis(10-undecylen-1-yloxybenzoyloxy-p-ethoxybenzoate) (M2) and a series of side-chain cholesteric elastomers were prepared. The chemical structures of the monomers and elastomers obtained were confirmed by element analyses, FT-IR, and 1H NMR. The mesomorphic properties and thermal stability were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. M 1 showed cholesteric phase, and M 2 displayed nematic phase. The elastomers containing less than 12 mol% of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability.  相似文献   

10.
New liquid crystalline monomer 4-(4-ethoxybenzoyloxy)biphenyl-4′-[(10-undecylen-1-yloxy)-4′-ethoxy]benzoate (M 1 ), chiral crosslinking agent isosorbide di-(10-undecylen-1-yloxybenzoate) (M 2 ), and the corresponding elastomers were prepared. The chemical structures of M 1 and M 2 were characterized by Fourier transform infrared and 1H-nuclear magnetic resonance. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X-ray diffraction measurements. M 1 exhibited typical threaded texture and droplet texture of nematic phase. The use of chiral crosslinking agent in the polymer networks could induce cholesteric phase. The elastomers containing less than 10 mol% of the chiral crosslinking units showed elasticity, reversible phase transition, wide mesophase temperature ranges, and high thermal stability. For the elastomers P 2 P 4 , the glass transition temperature (T g) increased; clearing temperature (T i) and mesophase temperature range (ΔT) decreased with increasing content of the crosslinking unit.  相似文献   

11.
The synthesis of new side-chain cholesteric elastomers derived from a cholesteric monomer and mesogenic crosslinking agent is presented. The chemical structures of the monomers obtained were confirmed by elemental analyses, FT-IR, 1H NMR, and 13C NMR. The mesomorphic properties and thermal stability were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarizing optical microscopy (POM), and X-ray diffraction (XRD) measurements. M1 showed cholesteric phase, and M2 displayed enantiotropic nematic phase and monotropic smectic phase. The elastomers containing less than 12 mol% of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability.  相似文献   

12.
Phase diagrams of chiral nematic liquid crystals are studied within the framework of a generalized Landau-Ginzburg-de Gennes theory. Using the parametrization of Grebel, Hornreich, and Shtrikman for the tensor order parameter Q, all relevant elastic terms are included for the helicoidal phase and the blue phases of chiral nematic liquid crystals up to fourth order in Q and its gradient ∂Q. The influence of the additional elastic terms on the phase diagrams of the chiral nematic phases is then investigated. The theory correctly describes the variation of the pitch with temperature and the induced biaxiality of the cholesteric phase. The results resolve the discrepancies encountered by Hornreich and Shtrikman in the comparison of experiment and theory. New features in the topology of the phase diagrams of blue phases, like re-entrant phase transitions, are predicted.  相似文献   

13.
The synthesis of new side chain cholesteric liquid crystalline elastomers containing the flexible non-mesomorphic crosslinking agent M-1 and the cholesteric monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the obtained monomers and network polymers were confirmed by 1H NMR and FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The glass transition temperatures and isotropic temperatures of the mesomorphic elastomers decreased as the concentration of crosslinking units increased; in the mesomorphic region the liquid crystalline elastomers showed elasticity, reversible phase transitions and Grandjean texture. The flexible crosslinking agent did not disturb the cholesteric structure; moreover, it was beneficial for adjusting the helix of the cholesteric liquid crystalline polymers, and cholesteric elastomers P-6, P-7, show reversible selective reflection of visible light.  相似文献   

14.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

15.
The synthesis of two cholesteric monomers (M1 and M2), nematic crosslinking agent (C1 and C2), and the corresponding side-chain elastomers containing menthyl groups (P1 and P2 series) is described. The mesomorphism was investigated by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction, and thermogravimetric analysis. The effect of the content of the different nematic crosslinking unit on the mesomorphism of the elastomers was discussed. M1 and M2 showed cholesteric and blue phases; C1 and C2 showed nematic phase. Because of the introduction of the nematic crosslinking unit, elastomers P1-1−P1-5 and P2-1−P2-5 exhibited cholesteric phase. With increasing the content of nematic crosslinking unit, T g of the obtained elastomers revealed an increased tendency, and T i of P1 series firstly increased then decreased, while T i of P2 series decreased the mesomorphism of the corresponding elastomers when the content of nematic crosslinking unit was 12 mol.%.  相似文献   

16.
A series of new chiral smectic liquid crystalline elastomers was prepared by graft polymerization of a nematic monomer with a chiral and non‐mesogenic crosslinking agent, using polymethylhydrosiloxane as backbone. The chemical structures of the monomers and polymers obtained were confirmed by FTIR and 1H NMR. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. Monomer M 1 showed a nematic phase during heating and cooling. Polymer P 0 exhibited a smectic B phase; elastomers P 1P 3 showed the smectic A phase, P 4P 6 showed a chiral smectic C(SmC*), and P 7 displayed stress‐induced birefringence. Elastomers containing less than 15?mol?% M 2 displayed elasticity, reversible phase transitions with wide mesophase temperature ranges, and high thermal stability. With increasing content of the crosslinking unit, glass transition temperatures first increased, then fell, then increased again; isotropization temperatures and mesophase temperature ranges steadily decreased.  相似文献   

17.
The phase of a liquid crystal (LC) changing from a nematic phase to a cholesteric (Ch) mesophase is achieved by adding different ratios of chiral dopants S811. By studying the transmission spectrum, we are able to measure the helical pitch in cholesteric phase. The pitch in the mixtures of nematic E7 and chiral dopants S811 as a function of the concentration of the dopant and temperature is investigated. The sensitivity of the selective reflection notch of the cholesteric phase to the thermal tuning depends strongly on the ratios of the chiral dopants. It reveals that the influence of temperature is more profound for those cholesteric liquid crystals (CLCs) which exhibit smectic A (SmA) at lower temperatures. When fitted using Keating's formula, the helical pitch calculated from our experimental results lies on the predicted curve. Optimised ratios of the mixture CLCs for the optimised reflection band with the specified wavelength ranging from 467 nm to 2123 nm are suggested.  相似文献   

18.
Based on charge transfer interactions with the (chiral) electron acceptor (-)-2-(2,4,5,7-tetranitro-9-fluorenylidenaminooxy)propionic acid ((-)-TAPA), our easily accessible disc-shaped electron rich multiynes (for example, 1 and 2) give rise to two types of cholesteric nematic phases. Thus, the binary mixture of the nematic discotic (ND) pentakis-(4-methylphenylethynyl)phenyl hexadecyl ether (2) with (-)-TAPA exhibits its twisted variant (N*D). Likewise, but now in a ternary mixture, the homologue 1—peripherically unsubstituted and non-mesogenic—with the two electron acceptors (-)- TAPA and 2,4,7-trinitrofluorenone—both also non-liquid crystalline—shows cholesteric nematic properties, most probably however of a columnar type (N*C). First results concerning these charge transfer induced cholesteric-nematic properties, including phase diagrams and the helical twist of the two systems presented here, are discussed on the basis of data obtained by polarizing microscopy and differential scanning calorimetry.  相似文献   

19.
The addition of the achiral biphenyl dopant 2,2',6,6'-tetramethyl-4,4'-bis(4-n-nonyloxybenzoyloxy)biphenyl (3) or its dithionoester or dithioester analogue (4, 5) to a 4 mol % mixture of the atropisomeric biphenyl dopant (R)-2,2',6,6'-tetramethyl-3,3'-dinitro-4,4'-bis(4-n-nonyloxybenzoyloxy)biphenyl, (R)-1, in the phenylpyrimidine SmC host PhP1 produces a significant amplification of the spontaneous polarization induced by (R)-1. This amplification may be due to a chiral perturbation by (R)-1 which causes a shift in the equilibrium between enantiomeric conformations of the achiral dopant. The degree of polarization amplification afforded by the achiral dopant, as expressed by the polarization amplification factor PAF, varies with the nature of the linking group. This may be ascribed to different rotational distributions of the core transverse dipole moments relative to the polar axis of the SmC* phase and/or to differences in lateral bulk of the polar linking groups. The latter may affect the degree of chiral molecular recognition achieved by 3-5 in the binding site of the SmC* phase.  相似文献   

20.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号