首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emissions of biacetyl excited at 4200 Å were studied at pressures down to 10?3 torr. Apart from the well-known nanosecond fluorescence, a new emission of the same spectral composition was found with a non-exponential decay in the microsecond range. Furthermore the phosphorescence, as defined by its spectral composition, was found to be collisionally induced.The results imply that after excitation, the molecule rapidly transfers (rate constant kS→T) to the triplet state, giving rise to the nanosecond decay time; and can then transfer back to the singlet state (rate constant kT→S), giving rise to the microsecond emission. At the same time internal conversion can occur (kS→S0). From an analysis of the data we find for kS→S0 = 2.4 × 107 sec?1, kS→T = 7.6 × 107 sec?1, kT→S = 1.9 × 105 sec?1. The kinetic treatment can be transformed to a quantum mechanical one, yielding values for the triplet level density (?T), the coupling element VST and the number of triplet states (N) coupled to the singlet excited. At 4200 Å we find ?T = 6.3 × 105cm, VST = 1.0 × 10?5 cm?1, N = 400.Phosphorescence occurs only when the molecule is deactivated by collisions to a vibronic triplet state below the vibrationless excited singlet state. The efficiency of biacetyl collisions is 0.54.  相似文献   

2.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

3.
The phosphorescence lifetimes of propynal-h1 and propynal-d1 have been measured at room temperature in the 40 mTorr-1 Torr pressure range The reciprocal of the zero-pressure lifetime (k0) is (3.10 ± 0.05) × 103 and (1.70 ± 0.04) × 103 s?1 for propynal-h1 and propynal-d1 For both compounds the rate constant for self-quenching between triplet and ground-state molecules is kSQ = (1 2±007) × 103 Torr?1 s?1 The deuterium isotope effect is attributed to the T1 → S0 radiationlcss decay, for which kHISC/kDISC = 2 4  相似文献   

4.
The variation in the lifetime of flash-excited gaseous benzophenone with pressure and temperature indicates that (1) self-quenching is a relatively inefficient process for the long-lived emission, ksq = 9 × 105 M?1 s?1 (estimated from solution data) at 25°C and 1.2 × 107 M?1 s?1 at 170°C and (2) the lifetime decreases with increasing temperature as a result of photochemical and photophysical decay pathways which have significant activation energies. The importance of diffusion to the walls on lifetime measurements is discussed.  相似文献   

5.
The photoconductivity of DCHD displays a maximum near 3.6 eV coinciding with the maximum of the So → S1 absorption of the carbazole group. It is attributed to a sensitization involving charge transfer from the excited chromophore to the chain. The rate constant for non-radiative decay of the carbazole singlet due to energy transfer to the chain is 1.6 × 1013 s?1, and for charge transfer ≈ 3 × 1011 s?1.  相似文献   

6.
The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

7.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
1,5-cyclooctadiene or 4-vinylcyclohexene mixture diluted with argon was heated to temperatures in the range 880–1230 K behind reflected shock waves. Profiles of IR-laser absorption were measured at 3.39 μm. From these profiles, rate constants k1 and k2 for the decyclization reactions 1,5-cyclooctadiene → biradical and 4-vinylcyclohexene → biradical were evaluated as k1 = 5.2 × 1014 exp(?48.3 kcal/RT) s?1 and k2 = 3.5 × 1014 exp(?55.3 kcal/RT) s?1, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The quantum yields of phosphorescence (Φp) of biacetyl have been determined in pure biacetyl, biacetyl-SO2, and biacetyl-c-C6H12 mixtures in experiments using bands of radiation centered at 3450, 3650, 3880, and 4348 Å. It has been shown that the unexpected effect of gas concentration on the quantum yields of the sulfur dioxide triplet-sensitized phosphorescence of biacetyl resulted largely from the significant destruction of biacetyl triplets at the wall of the cell. The kinetics of the variation of Φp with [Ac2], wavelength of the absorbed light, and added gases provide new estimates of the energy relations and the rate constants for the decomposition reaction of vibrationally rich biacetyl molecules in the first excited singlet state (1Ac2?): 1Ac2? → products (1), 1Ac2? + Ac21Ac2 + Ac2 (2); the minimum energy necessary in 1Ac2? for reaction (1) to occur is estimated to be about 72.8 kcal/mole above the ground state of biacetyl: k1/k2 = (4.3 ± 0.1) × 10?3M at 3450 Å, (4.07 ± 0.04) × 10?4M at 3650 Å, and (5.6 ± 0.4) × 10?5M at about 3800 Å. The variation of the rate constant ratio is shown to be consistent with the expectations of the simple theory of excited molecule decomposition. Biacetyl triplet (3Ac2) rate constants were determined by measurements of Φp in O2 and NO-containing mixtures: 3Ac2 + S → (Ac2–S, products) (8); for O2 = S, k8 = (5.76 ± 0.40) × 108 (3650 Å experiments), (5.76 ± 0.27) × 108 (4358 Å); for NO = S, k8 = (3.34 ± 0.20) × 109 (3650 Å), (3.33 ± 0.18) × 109 1./mole-sec (4358 Å). A comparison between these and previous findings of the SO2 triplet (3SO2)-sensitized excitation of biacetyl [5,6] show that the decomposition of the initial 3Ac2 product of the exothermic energy transfer reaction 3SO2 + Ac2 → SO2 + 3Ac2 is unimportant.  相似文献   

10.
Various oxodipyrromethenes with varying β-substituents have been synthesized and their reaction with singlet oxygen studied. The rates of chemical reactivity (kR) and physical quenching (kQ) of singlet oxygen by those substrates approach the diffusion threshold in both chloroform and methanol solvents, with kQ generally larger than kR in chloroform but of comparable magnitude in methanol. The range of (kQ+kR) values is 0.2–4.2 × 109 M?1 s?1.  相似文献   

11.
The rate constants for the reactions C2O + H → products (1) and C2O + H2 → products (2) have been determined at room temperature by means of laser-induced fluorescence detection of C2O radicals, generated either by the KrF excimer laser photolysis Of C3O2, or by the reaction of C3O2 with O atoms. Values of k1 = (3.7 ± 1.0) × 10?11 cm3 s?1 and k2 = (7 ± 3) × 10?13 cm3 s?1 were obtained.  相似文献   

12.
The reaction of OH with NOCl has been studied using the discharge flow reaction-EPR technique. The absolute rate constant is k1 = (4.3±0.4)× 10?13 cm3 molecule?1 s?1 at 298 K. A mass spectrometric investigation of the products shows that this reaction occurs via two primary steps, OH + NOCl → NO + ClOH(1a) and OH + NOCl → HONO + Cl (1b) with k1a =k1b.  相似文献   

13.
The thermal decomposition of propane was studied behind reflected shock waves over the temperature range 1100–1450 K and the pressure range 1.5–2.6 atm, by both monitoring the time variations of absorption at 3.39 μm and analyzing the concentrations of the reacted gas mixtures. The rate constants of the elementary reactions were discussed from the results. The rate constant expressions, k1 = 1.1 × 1016 exp (?84 kcal/RT) s?1 and k4 = 9.3 × 1013 exp(?8 kcal/RT) cm3 mol?1 s?1, of reactions C3H8 → CH3 + C2H5 and C3H8 + H → n-C3H7 + H2 were evaluated, respectively.  相似文献   

14.
The kinetic and mechanism of the reaction Cl + HO2 → products (1) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expression for the total rate constant was obtained either from the kinetics of HO2 consumption in excess of Cl atoms or from the kinetics of Cl in excess of HO2: k1 = (3.8 ± 1.2) × 10?11 exp[(40 ± 90)/T] cm3 molecule?1 s?1, where uncertainties are 95% confidence limits. The temperature‐independent value of k1 = (4.4 ± 0.6) × 10?11 cm3 molecule?1 s?1 at T = 230–360 K, which can be recommended from this study, agrees well with most recent studies and current recommendations. Both OH and ClO were detected as the products of reaction (1) and the rate constant for the channel forming these species, Cl + HO2 → OH + ClO (1b), has been determined: k1b = (8.6 ± 3.2) × 10?11 exp[?(660 ± 100)/T] cm3 molecule?1 s?1 (with k1b = (9.4 ± 1.9) × 10?12 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 317–327, 2001  相似文献   

15.
The relative rate technique has been used to determine the rate constants for the reactions Cl + CH3OCHCl2 → products and Cl + CH3OCH2CH2Cl → products. Experiments were carried out at 298 ± 2 K and atmospheric pressure using nitrogen as the bath gas. The decay rates of the organic species were measured relative to those of 1,2‐dichloroethane, acetone, and ethane. Using rate constants of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1, (2.4 ± 0.4) × 10?12 cm3 molecule?1 s?1, and (5.9 ± 0.6) × 10?11 cm3 molecule?1 s?1 for the reactions of Cl atoms with 1,2‐dichloroethane, acetone, and ethane respectively, the following rate coefficients were derived for the reaction of Cl atoms (in units of cm3 molecule?1 s?1) with CH3OCHCl2, k= (1.04 ± 0.30) × 10?12 and CH3OCH2CH2Cl, k= (1.11 ± 0.20) × 10?10. Errors quoted represent two σ, and include the errors due to the uncertainties in the rate constants used to place our relative measurements on an absolute basis. The rate constants obtained are compared with previous literature data and used to estimate the atmospheric lifetimes for the studied ethers. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 420–426, 2005  相似文献   

16.
A systematic fluorescence and flash photolytic investigation of a series of covalently linked fullerene / ferrocene based donor-bridge-acceptor dyads is reported as a function of the nature of the bridge between the donor site and acceptor site. The fluorescence of the investigated dyads 2rel = 0.17 × 10?4, 3rel = 0.78 × 10?4), 4rel = 1.5 × 10?4), 5rel = 0.7 × 10?4), and 6rel = 2.9 × 10?4) were substantially quenched, relative to N-methyl fulleropyrrolidine (1) (Φrel = 6.0 × 10?4). Photolysis of N-methyl fulleropyrrolidine (1) in toluene revealed formation of the excited singlet state which was followed by a rapid intersystem crossing to the excited triplet state. On the other hand, the fate of the excited singlet state of 2, 3, 4, 5, and 6 was found to be governed by rapid intramolecular quenching, with rate constants of 28×109 s?1, 6.9×109 s?1, and 3.4×109 s?1, 14×109 s?1, 2.3×109 s?1 respectively. The electron transfer process and the charge separation were confirmed by monitoring the characteristic π-radical anion bands at λmax = 400 and 1055 nm in degassed benzonitrile with τ1/2 = 1.8 μs (3) and 2.5 μs (4).  相似文献   

17.
The absolute rate constants of the reactions F + H2CO → HF + HCO (1) and Br + H2CO → HBr + HCO (2) have been measured using the discharge flow reactor-EPR method. Under pseudo-first-order conditions (¦H2CO¦?¦F¦or¦Br¦), the following values were obtained at 298 K: k1 = (6.6 ± 1.1) × 10?11 and k2 = (1.6± 0.3) × 10?12, Units are cm3 molecule?1s?1. The stratospheric implication of these data is discussed and the value obtained for k makes reaction (2) a possible sink for Br atoms in the stratosphere.  相似文献   

18.
The triplet-triplet energy transfer from benzaldehyde to biacetyl and the competing self-quenching between triplets and ground state molecules of benzaldehyde were investigated in the dilute vapor phase by monitoring the phosphorescence (T1(nπ*)So) decay of benzaldehyde. Following excitation into the S1(nπ*)S0 absorption band, a triplet self-quenching rate constant of kSQ=(2.4±0.1) × 104 s?1 Torr?1, corresponding to a gas-kinetic cross section of σSQ=0.22 A2, was measured. The collision-free lifetime of the benzaldehyde triplet was found to be 2.3 ± 0.4 ms. Substitution of the aldehydic proton by deuterium reduces kSQ by a factor of two: complete deuteration of the molecule has no further effect. Under the same excitation conditions, the energy transfer rate to biacetyl is kET=(2.8 ± 0.1) × 106 s?1 Torr?1, with σET = 24 A2. This process is not influenced by deuteration.  相似文献   

19.
The reaction H2O+(2B)+NO2(2A) → H2O(1A) + NO2+(1Σ) occurs at near the collision rate constant 1.2 × 10?9 cm3 s?1, in spite of the fact that the reactants produce both a singlet and a triplet state and the products correlate only with the singlet state. This would be expected to yield a statistical weight factor of 14 to be multiplied by the collision rate constant to obtain the maximum charge-tranfer rate constant. The triplet products of the charge transfer are clearly endothermic. The singlet—triplet intersection has not been identified but the available information about the singlet and triplet states of the intermediate protonated nitric acid molecule is discussed. Four other examples of apparent “spin violation” charge-transfer reactions have been noted H2O+ + NO, N2O+ + NO.CO+ + NO and CH4+ + O2.  相似文献   

20.
Flash photolysis of NO coupled with time resolved detection of O via resonance fluorescence has been used to obtain rate constants for the reaction O + NO + N2 → NO2 + N2 at temperatures from 217 to 500 K. The measured rate constants obey the Arrhenius equation k = (15.5 ± 2.0) × 10?33 exp(1160 ± 70)/1.987 T] cm6 molecule?2 s?1. An equally acceptable equation describing the temperature dependence of k is k = 3.80 × 10?27/T1.82 cm6 molecule?2 s?1. These results are discussed and compared with previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号