首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The v = 1 ← 0 vibration-rotation bands of the NS radical in the X2Π12 and X2Π32 electronic states were observed by using a tunable diode laser. From the least-squares analysis the band origins were determined to be 1204.2755(12) and 1204.0892(19) cm?1, respectively, for X2Π12 and X2Π32. The rotational and centrifugal distortion constants and the internuclear distance in the X2Π electronic state were obtained as follows: Be = 0.775549(10) cm?1, De = 0.00000129(33) cm?1, and re = 1.49403(4) A?, with three standard deviations indicated in parentheses.  相似文献   

2.
The flash photolysis of ClO2 has yielded a new absorption spectrum of ClO in the vacuum ultraviolet. Six electronic transitions have been assigned and vibrational constants for the upper states are given. All of the transitions are Rydberg in nature. The first four of these transitions are thought to be 2Σ ← X2Πi from which a spin-orbit coupling constant A = ?318 ± 5 cm?1 is obtained for the ground state.Hot bands in three of the above systems of ClO have been observed in absorption. This has enabled the direct measurement of the ground state vibrational constant (ΔG12″ = 845 ± 4 cm?1; ωe″ = 859 cm?1) for the first time.Extinction coefficients for a number of the ClO transitions have been measured.  相似文献   

3.
The 2Πu-X2Πg transition in Br2+ was reexamined using dispersed laser-induced fluorescence, and emission spectroscopy in a seeded molecular beam. New constants are derived, confirming the large difference between A2Π32 and A2Π12, and reconciling the emission spectrum with photoelectron data.  相似文献   

4.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

5.
The 0-0, 1-1, 2-2, and 3-3 bands of the A2Π-X2Σ+ transition of the tritiated beryllium monohydride molecule have been observed at 5000 Å in emission using a beryllium hollow-cathode discharge in a He + T2 mixture. The rotational analysis of these bands yields the following principal molecular constants.
A2Π:Be = 4.192 cm?1; re = 1.333 A?
X2Σ:Be = 4.142 cm?1; re = 1.341 A?
ωe′ ? ωe″ = 16.36 cm?1; ωe′Xe′ ? ωe″Xe″ = 0.84 cm?1
From the pure electronic energy difference (EΠ - EΣ)BeT = 20 037.91 ± 1.5 cm?1 and the corresponding previously known values for BeH and BeD, the following electronic isotope shifts are derived
ΔEei(BeH?BeT) = ?4.7 ≠ 1.5cm1, ΔEei(BeH?BeT) = ?1.8 ≠ 1.5cm1
and related to the theoretical approach given by Bunker to the problem of the breakdown of the Born-Oppenheimer approximation.  相似文献   

6.
The fundamental bands of the CF radical in the X2Π12 and X2Π32 electronic states were observed by using an infrared tunable diode laser as a source. Zeeman modulation could be used in detecting lines not only in the 2Π32 state, but also in 2Π12, because the CF radical deviates considerably from Hund's case (a). From the least-squares analysis of the observed spectra, the following molecular constants were obtained: Be = 1.416 704 (37) cm?1, αe = 0.018 419 (50) cm?1, re = 1.271 977 (17) A?, De = 6.68 (15) × 10?6cm?1, p0 = 0.008 580 (21) cm?1, p1 = 0.008 52 (11) cm?1, and ν0 = 1286.1281 (5) cm?1, with three standard errors in parentheses.  相似文献   

7.
The cw dye laser excitation spectrum of the A?1A″(000) ← X?1A′(000) vibronic band of HCF was observed between 17 188 and 17 391 cm?1 with the Doppler-limited resolution, 0.04 cm?1. The HCF molecule was produced by the reaction of discharged CF4 with CH3F, and 853 lines were observed, of which 516 transitions were assigned to KaKa = 3 ← 4, 2 ← 3, 1 ← 2, 0 ← 1, 1 ← 0, 2 ← 1, 0 ← 0, 1 ← 1, 2 ← 2, 3 ← 3, 2 ← 0, and 0 ← 2 subbands. A rotational analysis yielded the rotational constants and quartic and sextic centrifugal distortion constants for both the A? and X? states and the band origin, with good precision. The molecular constants determined reproduce the observed transition frequencies with an average deviation of 0.0038 cm?1. Small rotational perturbations in the excited state were found at J = 5, 6 and J = 10, 11 of J1,J and at J = 15, 16 of J2,J?1 levels.  相似文献   

8.
The pure rotational spectrum of the X 2Σ+ state of the gaseous SrF radical has been measured using microwave optical double resonance (MODR) techniques. The analysis fully confirms the recent dye laser excitation spectrum and rotational assignment of the B 2Σ+-X 2Σ+ system. Transitions were measured in both the v″ = 0 and v″ = 1 states to give values of Be″ = 0.250533 cm?1, αe″ = 1.546 × 10?3 cm?1 and γ″ (spin-rotation) = 2.49 × 10?3 cm?1. General qualitative features of MODR in 2Σ+ states are treated and suggested improvements for obtaining experimental hyperfine constants are discussed. The more precise ground state constants are merged with the B-X optical analysis to obtain a more accurate set of constants for both states.  相似文献   

9.
Lines in the ν3 (“antisymmetric” stretch) fundamental of the NCO radical in the X?2Π state were studied by CO laser magnetic resonance. The observations were assigned to P and R lines in the vibration-rotation band and lead to a precise determination of the vibrational interval and the anharmonic correction to the rotational constant: ν3 = 1920.60645(19) cm?1, α3 = 0.003338(21) cm?1. A single transition in the hot band (011)-(010), 2Δ52-2Δ52 was detected. This observation is used to determine the origin of the hot band as 1907.11892(20) cm?1, i.e., the anharmonicity parameter x23 = ?13.48753(28) cm?1.  相似文献   

10.
The wavenumbers of the vibration rotation band lines of 14N16O are reported for the 2Π12-2Π12, 2Π12-2Π12 and 2Π12-2Π12 subbands of the 1-0 transition in the infrared. The full set of spectroscopic constants for this band has been determined by direct approach using the analysis of Zare, Schmeltekopf, Harrop, and Albritton. In addition to the band origin ν0 and the B, D, H constants for the lower and upper vibrational levels, the following spin-orbit coupling constants have been derived: A?0 = 123.02772 ± 0.00011 and A?1 = 122.78248 ± 0.00011 (in cm?1). Apparent centrifugal corrections to these constants have been determined and the values obtained for them are A?D0 = (0.347573 ± 0.00051) × 10?3 and A?D1 = (0.337135 ± 0.00050) × 10?3cm?1. Λ-Type doubling constants evaluated by using both grating and tunable laser data are also reported.  相似文献   

11.
The electronic absorption spectrum of cyanogen chloride has been investigated in the range 2200-1250 Å. The first s-Rydberg transitions, X?1Σ+3Π1 and X?1Σ+1Π1 have been assigned, and analyzed to yield exchange and spin-orbit coupling parameters. The relative intensities of these two transitions have been shown to accord with an intermediate coupling situation. The π → π1 intravalence excitations, leading to 1.3?, Δ and Σ+) states, have been discussed. It has been shown that one or both of the 1Σ? and 1Δ states have bent geometries and that the 1Σ+ state is located (tentatively) at 79 755 cm?1. Two σ → π1π → σ1 states have been assigned, one at 56 340 cm?1, the other at 74 450 cm?1. The latter assignment is tentative, being largely based on observed vibronic interferences between the X?1Σ+1Π1 transition and the 74 450 cm?1 transition. A considerable amount of vibrational oscillator strength and quantum defect data is presented.  相似文献   

12.
The A?2A′(003) ← X?2A″(000) vibronic transition (16 370 to 16 425 cm?1) of the DSO radical in studied by Doppler-limited dye laser excitation spectroscopy. DSO is produced in a flow system by reacting the products of a microwave discharge in O2 with D2S. About 637 observed lines are assigned to 987 transitions of the 19 subbands: KaKa = 6 ← 5, 5 ← 4, 4 ← 3, 3 ← 2, 2 ← 1, 1 ← 0, 0 ← 1, 1 ← 2, 2 ← 3, 3 ← 4, 0 ← 0, 1 ← 1, 2 ← 2, 3 ← 3, 4 ← 4, 3 ← 1, 2 ← 0, 0 ← 2, and 1 ← 3. They are analyzed to determine rotational constants, centrifugal distortion constants, and spin-rotation constants for both the ground and the excited electronic states. The band origin obtained is 16 413.874 (2.5σ = 0.002) cm?1. The rotational constants determined are combined with the previous result on HSO (M. Kakimoto et al., J. Mol. Spectrosc.80, 334–350 (1980)) to calculate the structural parameters for this radical in both the states: r(SO) = 1.494(5) A?, r(SH) = 1.389(5) A?, and ∠HSO = 106.6(5)° for the X?2A″ state, and r(SO) = 1.661(10) A?, r(SH) = 1.342(8) A?, and ∠HSO = 95.7(21)° for the A?2A′(003) state, where values in parentheses denote 2.5σ.  相似文献   

13.
Some spectroscopic properties of the low-energy electronic states of 9-fluorenone have been examined. The spectra in paraffin matrices at 4.2°K show detailed vibrational spectra. Two fluorescence spectra are observed; a diffuse emission arises from 9-fluorenone crystals in the paraffin matrix, and a sharp emission is characteristic of the molecule. The sharp fluorescence is analyzed in terms of known a1 vibrational fundamentals. The sharp absorption is a near mirror-image to the fluorescence, so Herzberg-Teller vibrations are not prominent. The polarization in the crystal spectrum allows this low-energy transition near 23 000 cm?1 to be assigned 1B21A1. Because there is no vibronic perturbation in fluorescence, and certainly no out-of-plane modes, a π1 ← n transition seen at about 26 000 cm?1 is tentatively assigned 1B11A1. Another sharp absorption system is seen at 31 000 cm?1 in the paraffin matrices at 4.2°K (linewidth 6 cm?1) but no fluorescence was detected. The polarized crystal spectrum indicated the assignment of this system and another very strong system at 40 000 cm?1 to be 1B21A1, while other systems at about 34 000 cm?1 and 44 000 cm?1 are 1A11A1.The phosphorescence spectrum of pyrene-d10 held in a single crystal of 9-fluorenone at 4.2°K has been recorded. No delayed fluorescence from the host crystal is observed at 4.2°K but is intense at 77°K. The energy difference between host and guest triplet levels is estimated to be about 900 cm?1 allowing the lowest triplet state of 9-fluorenone to be placed at 17 800 cm?1.  相似文献   

14.
Observations of the spectrum of SnS excited in chemiluminescence have led to the characterization of two low-lying excited states of SnS, aΩ1(3Σ+), with Te = 18 143.9 cm?1, and A0+(3Π), with Te = 22 021.3 cm?1. Extended rotational analyses of the perturbed bands observed in the absorption spectrum enable assignments to be suggested for the components Ω0+ and 1 of 3Σ? and Ω1 of 3Π.  相似文献   

15.
A rotational assignment of approximately 80 lines with Ka′ = 0, 1, 2, 3, and 4 has been made of the 593 nm 2A12B2 band of NO2 using cw dye laser excitation and microwave optical double-resonance spectroscopy. Rotational constants for the 2B2 state were obtained as A = 8.52 cm?1, B = 0.458 cm?1, and C = 0.388 cm?1. Spin splittings for the Ka′ = 0 excited state levels fit a simple symmetric top formula and give (?bb + ?cc)2 = ?0.0483 cm?1. Spin splittings for Ka′ = 1 (N′ even) are irregular and are shown to change sign between N′ = 6 and 8. Assuming that the large inertial defect of 4.66 amu Å2 arises solely from A, a structure for the 2B2 state is obtained which gives r (NO) = 1.35 A? and an ONO angle of 105°. Alternatively, weighting the three rotational constants equally gives r = 1.29 A? and θ = 118°.  相似文献   

16.
The vibration-rotation spectrum of the HCF molecule was observed by laser-induced fluorescence with an Ar+ laser. The laser line of 514.5 nm coincided with two rovibronic transitions, rR1(9) and pQ5(9) for A?1A″(020)-X?1A′(000). The spectrum consisted of the progression of bending vibrational mode ν2. The rotational lines were fully resolved for each of the vibronic bands. The analysis yielded the vibrational and rotational parameters for both the ground and the excited vibronic states. The rotational parameters of the X?1A′ state were obtained for four vibrational levels [(0v20), v2 = 0 – 3].  相似文献   

17.
The rotational structure of about 40 bands of 12C2HD observed in the region 6000?600 cm?1 has been measured and interpreted with the purpose of determining a comprehensive set of molecular constants for this isotopic variety of acetylene. Combining these data with the results for 12C2H2 and 12C2D2, a reevaluation of the equilibrium internuclear distances for the acetylene molecule has been made: re(CH) = 1.06215 ± 17 × 10?5A? and re(CC) = 1.20257 ± 9 × 10?5A? were obtained. This paper presents all the molecular constants derived in this study.  相似文献   

18.
The fundamental vibration-rotation band of the 79BrO and 81BrO radicals in the 2Π32 ground electronic state was observed in the region 700–760 cm?1 by using a Zeeman-modulated infrared diode laser spectrometer. The BrO radical was generated directly in a multiple reflection Zeeman cell by a 60-Hz discharge in a mixture of Br2 and O2. The observed absorption lines, 20 and 22 in number for 79BrO and 81BrO, rspectively, were combined with the microwave data of Cohen et al. [J. Mol. Spectrosc.87, 459–470 (1981)] and were subjected to least-squares analysis to determine the rotational and centrifugal distortion constants for both the v = 0 and v = 1 states and also the band origin. The band origin obtained for 81BrO, 721.92814(57) cm?1, gives a support to the value 714 (10) cm?1 estimated by Cohen et al. using the microwave data and also the result 722.1 ± 1.1 cm?1 obtained by Barnett et al. [Canad. J. Phys.59, 1908–1916 (1981)] from a reanalysis of the A2Πi-X2Πi absorption spectrum.  相似文献   

19.
The rotationally resolved, laser-induced fluorescence spectrum of the E band of the A?1A2-X?1A1 transition of SO2 seeded in a supersonic jet was observed, and each rotational line was assigned on the basis of the ground state combination differences and the relative intensity data as a function of the rotational temperature. It was demonstrated that the line congestion was reduced significantly in the spectrum of the jet, and some of the lines, e.g., rR0(0), were assigned unambiguously. This makes it possible to determine the vibronic band origin with an error of less than 0.2 cm?1.  相似文献   

20.
Literature data for the line frequencies of the B3Π(0u+) ← X1Σg+ transition of Cl2 are fitted directly by least squares to obtain new molecular constants. The constants from individual bands are merged to obtain single-valued estimates of the rotational constants for each vibrational level of the B state. The results are combined with recent data from the BX system in emission to obtain new RKR turning points for the B and X states, and Franck-Condon factors for the B-X system. The new constants are also used to provide revised long-range parameters for Cl2(B) which differ from those of earlier work. In particular, the coefficient C5 of the leading term in the inverse-power long-range potential is now found to be C5 = 1.16(2) × 105A?5 cm?1. Theoretical results for the variation of centrifugal distortion parameters for levels near dissociation are tested for Dv and Hv, and an extrapolation based on this behavior is used to facilitate determination of reliable Bv and G(v) values for the highest observed B-state levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号