首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The J = 4 ← 3 and J = 3 ← 2 rotational transitions of 1-phosphapropyne, CH3CP, between 26.5 and 40 GHz have been studied by microwave spectroscopy. The spectrum shows the characteristic vibration-rotation satellite patterns associated with a C3v symmetric rotor. Apart from the most abundant isotope variant, the species 12CD312C31P, 12CD2H12C31P, 12CH2D12C31P, 13CH312C31P, 12CH313C31P, 13CD312C31P, and 12CD313C31P have also been studied. For 12CH312C31P the rotational constants B0 = 4991.339 ± 0.003 MHz, DJ = 0.823 ± 0.092 kHz, DJK = 66.59 ± 0.18 kHz have been determined. From these data the following structural parameters have been derived: rs(CH) = 1.107 ± 0.001 A?, ∠s(HCC) = 110.30 ± 0.09°, rs(CC) = 1.465 ± 0.003 A?, r0(CP) = 1.544 ± 0.004 A?. The dipole moment has been determined as 1.499 ± 0.001 D by analysis of the Stark effect of the J = 3 ← 2, |K| = 1 line. The vibrational satellites (vs = 1, 2, and 3) have been studied and various vibration-rotation parameters derived.  相似文献   

2.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been constructed for observation of extremely weak millimeter-wave spectra of gases. It has been used to measure JJ, K = 0 ← 3 transitions in PH3 and JJ, K = 0 ← 3 as well as K = ±1 ← ±4 transitions in PD3. The B0 and C0 spectral constants (in MHz) are: for PH3, B0 = 133 480.15 ± 0.12 and C0 = 117 488.85 ± 0.16; for PD3, B0 = 69 471.10 ± 0.03 and C0 = 58 974.37 ± 0.05. The effective ground-state values obtained for the bond angle and bond length are: for PH3, r0 (A?) = 1.4200 and α0(o) = 93.345; for PD3, r0 (A?) = 1.4176 and α0(o) = 93.359. The corresponding zero-point-average values were calculated to be: for PH3, rz (A?) = 1.42699 ± 0.0002 and αz(o) = 93.2287; for PD3, rz (A?) = 1.42265 ± 0.0001 and αz(o) = 93.2567 ± 0.004. For both species, the equilibrium values are re (A?) = 1.41159 ± 0.0006 and αe(o) = 93.328 ± 0.02.  相似文献   

3.
The two-photon excitation (TPE) spectrum of sulfur dioxide is reported in the region of the C?1B2X?1A1 [2b11) ← 1a2(π)] transition. The spectrum shows considerable rovibronic structure; the band contours are identified as arising from ΔK?1 = ± 1 transitions and rotational features are assigned by comparison with synthetic spectra generated from known rotational constants. The vibronic structure observed in TPE is quite similar to that observed in the one-photon spectrum: no zero-rank tensor transitions to levels with odd v3 are identified, though they are allowed in the presence of vibronic coupling. The vibronic intensity distribution in the TPE spectrum below the dissociation limit is similar to that in one-photon absorption. However, near the dissociation threshold (5.63–5.67 eV), marked intensity redistribution occurs, from which it is concluded that the lowest energy photo-dissociation process proceeds through asymmetric stretching of the SO bonds.  相似文献   

4.
The F2(2) ← F1(2) and F2(2) ← F1(1) transitions of the J = 7 levels of the ground state of CH4 have been observed by infrared-radio frequency double resonance using the 3.39 μ HeNe laser line. The transition frequencies are 423.02 ± 0.02 MHz and 1246.55 ± 0.02 MHz, respectively. Using these frequencies and the splitting of the E and F2 levels of the J = 2 state calculated from the molecular beam magnetic resonance spectra of Ozier, the centrifugal distortion constants are derived to be Dt = 132933 ± 10 Hz, H4t = ? 16.65 ± 0.2 Hz, and H6t = 10 ± 1 Hz. The J = 15 E(1)E(2) microwave transition is predicted as 14150 ± 9 MHz.  相似文献   

5.
The heat capacity of synthetic α-Fe2O3 has been measured in the range 300–1050K by adiabatic shield calorimetry with intermittent energy inputs and temperature equilibration in between. A λ-type transition, related to the change from antiferro- to paramagnetism in the compound, is delineated and a maximum heat capacity of about 195 JK?1 mole?1 is observed over a 3 K interval around 955 K. Values of thermodynamic functions have been derived and CP (1000K), [H0(1000K)-H0(0)], and [S0(1000K)-S0(0)] are 149.0JK?1 mole?1, 115.72 kJ mole?1, and 252.27 JK?1 mole?1, respectively, after inclusion of earlier low-temperature results [X0 (298.15K)-X0(0)]. The non-magnetic heat capacity is estimated and the thermodynamic properties of the magnetic transition evaluated. The results are compared with spin-wave calculations in the random phase approximation below the Néel temperature and the Oguchi pair model above. An upper estimate of the total magnetic entropy gives 32.4JK?1 mole?1, which compares favorably with that calculated for randomization of five unpaired electron spins on each iron, ΔS = 2R ln 6 = 29.79 JK?1 mole?1 for α-Fe2O3. The critical exponent α in the equation Cm = (Aα) [(|Tn?T|/Tn)?1] + B is ?(0.50±0.10) below the maximum and 0.15±0.10 above, for Tn = 955.0K. The high temperature tail is discussed in terms of short range order.  相似文献   

6.
Cyanobutadiyne (cyanodiacetylene), HCCCCCN, is sufficiently stable at low pressures to permit its rotational spectrum to be studied by microwave spectroscopy. The spectrum consists of a series of R-branch transitions typical of a linear molecule. The transitions with J = 9 to 14 which lie between 26.5 and 40.0 GHz have been measured for the vibrational ground state. Transitions have also been detected in natural abundance for all possible singly substituted 13C and 15N isotopic species. Deuteriated cyanobutadiyne, DCCCCCN, has also been synthesized and its ground state spectrum recorded. These measurements have enabled a complete substitution structure to be derived for the first time for a polyacetylene: r8(HCa) = 1.0569 ± 0.001, r8(CaCb) = 1.2087 ± 0.001, r8(CbCc) = 1.3623 ± 0.003, r8(CcCd) = 1.2223 ± 0.004, r8(CdCe) = 1.3636 ± 0.003, r8(CeN) = 1.1606 ± 0.001 A? (10?10m). The spectroscopic parameters for the ground state are B0 = 1331.3313 ± 0.001 MHz and D0 = 0.0257 ± 0.002 KHz. The dipole moment, determined from the Stark effects of the J = 9 and 10 lines, is 4.33 ± 0.03 Debye.  相似文献   

7.
The two-photon excitation spectrum of fluorobenzene vapor has been recorded in the region of the A?1B2X?1A1 transition. The spectrum shows considerable rovibronic structure with the bulk of the intensity lying in the subsystem induced by the ν14(b2) vibration. Two types of rovibronic contours, arising from ΔKa = ±1 and from ΔKa = 0, ±2 transitions, are identified. Major features in these contours are assigned by comparison with synthetic spectra, calculated using known upper and lower state rotational constants. The intensity distribution among the various bands in progressions of the totally symmetric vibrations is considerably different from that in the one-photon absorption spectrum, and the possible reasons for this are discussed.  相似文献   

8.
We have derived expressions for the Hamiltonian matrix elements for the coupling of any number of quadrupolar nuclei with the molecular rotation using the Wigner n-j formalism. These expressions have been used to analyse the nuclear quadrupole hyperfine structure of the rotational spectrum of cyanogen azide, NCN3. The analysis was effected by comparing the experimental high resolution spectral traces with computer simulated traces from which the nuclear quadrupole coupling constants obtained are (MHz)
xaa(1) = 4.82 ± 0.02,xbb(1) = ?0.70±0.08,
xaa(2) = ?0.85 ± 0.07,xbb(2) = 0.70±0.08,
xaa(3) = ?0.75 ± 0.07,xbb(3) = 0.70±0.05,
xaa(4) = ?2.27 ± 0.04,xbb(4) = 0.70±0.07,
Small corrections to the previously reported rotational constants are given.  相似文献   

9.
Measurements of the microwave spectrum of the C4v molecule IF5 in the excited vibrational states v5(B1) = 1 and v9(E) = 1 are reported for the transitions J4 → 5, 5 → 6, 6 → 7, 8 → 9, and 9 → 10 (27–55 GHz). The Coriolis resonance interaction between these two states is analyzed by diagonalization of Hamiltonian matrices of dimension 3 × (2J + 1) in which all (Δlk) = (±2, ±2)(q+), (±2, ±2)(q?), and (0, ±4)(R6) interactions are included as off-diagonal terms in addition to the v5 = 1 ? v9 = 1, l9 = ±1(R59) Coriolis interaction. In the v9 = 1 state spectra, the B1B2l-doubling of the kl = ?1 transitions and A1A2 splittings of the kl = ?3 transitions and B1B2 splittings of the kl = +3 transitions, all enhanced by the Coriolis resonance, have been observed and measured. Least-squares refined rovibrational parameters for the v5 = 1 and v9 = 1 states are reported and a preliminary value for the rotational constant C9 has been obtained.  相似文献   

10.
Vibration-rotation transitions of the fundamental band have been observed for both C35Cl and C37Cl in the 2Π12 and 2Π32 states by using an infrared diode laser spectrometer with Zeeman modulation. A few lines of the “hot” band (v = 2 ← 1) have also been recorded for C35Cl. From an analysis of the observed spectra improved values were obtained for the vibrational harmonic frequency and anharmonicity constant, rotational constants, and Λ-doubling parameters. It was found necessary to take into account centrifugal distortion effects on the spin-orbit coupling constant A in the analysis, which gave (dAdr)ere to be ?176 ± 38 or ?125 ± 38 cm?1, depending upon whether 2Σ? or 2Σ+ states contribute more to the Λ-type doubling. The equilibrium internuclear distance re was calculated from the derived rotational constants to be 1.64506 ± 0.00016 Å.  相似文献   

11.
The transitions J = 1 ← 0, K = 0; J = 2 ← 1, K = 0; and J = 2 ← 1, K = 1 of CH3I and CD3I were measured using a Stark-modulated microwave spectrometer. Iodine quadrupole coupling strengths were analyzed to determine variations with deuterium substitution on the methyl group and variations with centrifugal distortion. Quadrupole coupling strengths were described by the expression eQq0 + aJ(J + 1) + bK2 + cK4J(J + 1). Explicit expressions are given for a, b, and c for a symmetric top in terms of molecular parameters. For CH3I eQq0 = ?1934.11 ± 0.02 MHz and for CD3I eQq0 = ?1928.95 ± 0.04 MHz. Rotational constants obtained are B(CH3I) = 7501.274 ± 0.002 MHz and B(CD3I) = 6040.298 ± 0.007 MHz. The observed fractional change in halogen quadrupole coupling of 0.0027 is related to previous results for methyl chloride and methyl bromide.  相似文献   

12.
The pure rotational spectra of three deuterated ethylenes, CH2CD2, CH2CHD, and cis-CHDCHD, were observed by microwave spectroscopy, and the rotational and centrifugal distortion constants were determined precisely. The dipole moment of CH2CD2 was calculated from the Stark effects to be 0.0091 ± 0.0004 D. From the observed rotational constants the average structure was calculated to be rz(CC) = 1.3391 ± 0.0013 A?, rz(CH) = 1.0869 ± 0.0013 A?, θz(CCH) = 121.28 ± 0.10°, and rz(CH) - rz(CD) = 0.00137 ± 0.00037 A?, where the errors include one standard deviation in the fitting and errors due to an uncertainty (±0.03°) in θz(CCH) - θz(CCD).  相似文献   

13.
The microwave spectra of tertiarybutylphosphine (CH3)3CPH2, (CH3)3CPHD, and (CH3)3CPD2 have been recorded in the region 26.5–40.3 GHz. Both a- and c-type transitions were observed and assigned for the “light” and “heavy” molecules and a-type transitions were observed and assigned for the d1 species. The rigid rotor rotational constants were determined to be A = 4397.63 ± 0.04, B = 2878.88 ± 0.02, and C = 2870.86 ± 0.02 MHz for (CH3)3CPH2 and A= 4261.98 ± 0.04, B = 2769.82 ± 0.02, and C = 2752.71 ± 0.02 MHz for (CH3)3CPD2 and A = 4330 ± 2, B = 2831.45 ± 0.02, and C = 2801.50 ± 0.02 MHz for (CH3)3CPHD. Dipole moment components of |μa| = 1.06 ± 0.02, |μc| = 0.49 ± 0.02 and |μt| = 1.17 ± 0.02D were determined from the Stark effect. By assuming reasonable structural parameters for the tertiarybutyl and phosphine groups, a least-squares fit of the rotational constants gave λP-C = 1.896 A? and ?CPH = 95.7°. No splitting was observed of the first excited state of the phosphine torsional mode.  相似文献   

14.
The rz structure of phosgene has been determined by a joint analysis of the electron diffraction intensity and the rotational constants as follows: rz(CO) = 1.1785 ± 0.0026 A?, rz(CCl) = 1.7424 ± 0.0013 A?, ∠z;ClCCl = 111.83 ± 0.11°, where uncertainties represent estimated limits of experimental error. The effective constants representing bond-stretching anharmonicity have been obtained from an analysis of the isotopic differences in the rz structure: a3(CO) = 2.9 ± 0.9 A??1, a3(CCl) = 1.6 ± 0.4 A??1. The equilibrium bond distances have been estimated from the rz structure for the normal species and from the anharmonic constants to be re(CO) = 1.1756 ± 0.0032 A?, re(CCl) = 1.7381 ± 0.0019 A?.  相似文献   

15.
The microwave spectrum of boron chloride difluoride, BClF2, has been investigated in the region 26.5–40.0 GHz. R-branch transitions belonging to the isotopic species 11B35Cl19F2, 11B37Cl19F2, and 10B35Cl19F2 have been observed and the derived rotational constants yield the following ground-state structural parameters: r0(BF) = 1.315 ± 0.006 A?, rs(BCl) = 1.728 ± 0.009 A?, < FBF = 118.1 ± 0.5°. The ground-state rotational constants of the most abundant species 11B35Cl19F2 are: A0 = 10 449.32 ± 0.13, B0 = 4705.811 ± 0.020, C0 = 3239.702 ± 0.026 MHz, ΔJK = 8.9 ± 1.7, and ΔJ = 1.86 ± 0.48 KHz. The asymmetry parameter κ = ?0.593291 and the inertial defect δ0 = 0.2361 amu Å2 which is consistent with that expected for this type of molecule if planar. The 35Cl quadrupole coupling constants for 11B35Cl19F2 are χaa = ?42.8 ± 1.0, χbb = 30.2 ± 1.5, χcc = 12.6 ± 1.5 MHz with the asymmetry parameter η = 0.41.  相似文献   

16.
The fluorescence excitation spectrum of the 1B3u(v′ = 0) ← 1Ag(v″ = 0) transition in s-tetrazine has been observed and measured. The sample was cooled to a rotational temperature of <1 K by expansion in a supersonic free jet. In this way the rotational structure arising from asymmetry split low J lines could be observed. The rotational A and B axes of the 2H112C214N4 isotope were observed to interchange upon electronic excitation and a theory describing the effect of this interchange upon the optical selection rules has been developed. Analysis of the resolved rotational structure suggests that the geometry change upon electronic excitation is smaller than that deduced from previous analysis of the room temperature optical spectrum.  相似文献   

17.
The resonant 2-photon E(O+g) ← B(O+g) ← X(O+g) transition of I2 vapor has been studied by polarization spectroscopy, leading to a rotational analysis of the ν = 0–15 vibrational levels of the E state. The principal constants determined are Be = 19.9738(42) × 10-3, αe = 5.602(84) × 10-5, γe = 1.02(41) × 10-7, DeJ = 3.040(74) × 10-9cm-1, and re = 3.6470(5) A?.  相似文献   

18.
The microwave and photoelectron spectra of isocyanato ethene CH2CHNCO have been studied. The microwave results indicate that the species is planar and possesses both a cis and a trans form. The appearance of dense and complicated vibrational satellite lines indicates that the molecule is quite flexible, a general property of molecules containing the isocyanate group. The rotational constants are:
cis: A0 = 20 146.8, B0 = 3107.267, C0 = 2689.513 MHz; trans: A0 = 62 584.051, B0 = 2437.730, C0 = 2346.507 MHz
These constants are shown to be consistent with structures in which r(CN) = 1.382 ± 0.005 A?, ∠(CCN) = 122 ± 1° (for both conformers), and ∠(CNC) = 142.4 ± 0.5° (cis) and 138.4 ± 1.5° (trans). The dipole moments are μ(cis) = 2.120 ± 0.015 and μ(trans) = 2.207 ± 0.007 D. Several distinct peaks are observed in the photoelectron spectrum; however, the structure is not resolved into features belonging to the different isomers. The first ionization potential lies at 9.80 ± 0.1 eV. The spectrum has been assigned with the aid of theoretical calculations.  相似文献   

19.
Fluorohydroxy borane, BF(OH)2, has been identified in the hydrolysis of trifluoroborane by microwave spectroscopy. The rotational and centrifugal distortion constants have been determined for the normal and d2 species. From these constants the molecular structure has been determined. This molecule does not have C2 symmetry and the structural parameters are r(BO1) = 1.360 A?, r(BO2) = 1.365 A?, ∠FBO1 = 118.2°, and ∠FBO2 = 121.0°. The inertia defects establish the planarity of the molecule. The dipole moment of 1.818 ± 0.007 D has been obtained from the measurements of the Stark effects.  相似文献   

20.
The rs structure of thioformamide has been determined from the microwave spectra of the normal as well as isotopic species of the molecule. The structural parameters obtained assuming the planarity of the molecule are NHc = 1.0018 ± 0.006 A?, NHt = 1.0065 ± 0.003 A?, CN = 1.3582 ± 0.003 A?, CS = 1.6262 ± 0.002 A?, CHa = 1.096 ± 0.08 A?, ?HcNHt, = 121°42′ ± 40′, ?HcNC = 117°55′ ± 40′, ?HtNC = 120°22′ ± 30′, ?NCS = 125°16′ ± 15′ ?NCHa = 108°5′ ± 5°, and ?SCHa = 126°39′ ± 5°.The dipole moment is calculated from the Stark effects of the three transitions to be μa = 3.99 ± 0.02 D, μb = 0.13 ± 0.25 D, and μtotal = 4.01 ± 0.03 D, where the c component is assumed to be zero.The quadrupole coupling constant of the 14N nucleus is estimated using the doublet splittings observed for six Q-branch transitions; χcc - χbb = ?5.39 ± 0.15 MHz and χaa = 2.9 ± 1.2 MHz.Two sets of vibrational satellites are observed and assigned to the first excited state of the amino wagging and the NCS bending vibrations, respectively. The relative intensity measurement gives the vibrational energies of 393±40 cm?1 and 457 ± 50 cm?1 for NH2CHS and 293 ± 30 cm?1 and 393 ± 40 cm?1 for ND2CHS. The amino wagging inversion vibration in the molecule is discussed in comparison with that in formamide. It is most probable that the thioformamide molecule is also planar without any potential hump to the amino inversion at the planar configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号