首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The local surface structures of S/Ni(111) in the ( √3 × √3) R30° and (5√3 × 2) phases have been investigated by means of polarization-dependent sulfur K-edge surface EXAFS. In the (√3 × √3 ) R30° phase, sulfur adatoms are found to occupy threefold hollow sites with a S---Ni distance of 2.13 Å and an inclination angle ω of the Sz.sbnd;Ni bonds at 44° from the surface plane. In contrast, in the (5√3 × 2) phase, it is determined that the Sz.sbnd;Ni bond is longer, 2.18 Å, more inclined, ω = 31°, and that the coordination number is not 3 but 4. These results strongly support a picture involving reconstruction of the top nickel layer to form a rectangular structure. Consideration of several models proposed for the (5√3 × 2) phase leads to one which is compatible with both the present results and results recently reported using STM.  相似文献   

2.
An angle resolved photoemission study of a surface state on the SiC(0001)-(√3 × √3) surface is reported. Experiments carried out on the 6H and 4H polytypes give essentially identical results. A surface state band with semiconducting occupation is observed, centered around 1.0 eV above the valence band maximum (VBM) and with a width of about 0.2 eV. Recently calculated results for a Si-adatom-induced √3 × √3 reconstruction give a metallic surface state band centered about 1.2 eV above the VBM and with a width of 0.35 eV. The dispersion determined experimentally is smaller than calculated but exhibits the same trend, the surface state disperses downwards towards the VBM with increasing parallel wavevector component along both the qG--- and qG--- directions of the √3 × √3 surface Brillouin zone. The VBM is determined to be located at about 2.3(±0.2) eV below the Fermi level. The results indicate that Si adatoms on top of an outermost Si---C bilayer may be an inadequate structural model for explaining recent experimental findings for the SiC(0001)-(√3 × √3) surface.  相似文献   

3.
M. Sotto 《Surface science》1992,260(1-3):235-244
A LEED and AES study on oxygen adsorption on Cu(100) and (h11) faces with 5 h 15 has been performed under various adsorption conditions (220 K T 670 K and 1 × 10−8 P 6 × 10−5 Torr of oxygen). The dependence of adsorption temp on the oxygen surface superstructures is pointed out. At least, three oxygen surface states exist on a Cu(100) face. For low temperature exposures to oxygen, under conditions of slow surface diffusion, on the (100) face, two oxygen surface phases exist: a “four spots” and a c(2 × 2) superstructure, both observed even at saturation coverage; on all the stepped faces, a c(2 × 2) appears and no faceting is observed. For high temperature exposures, on the (100) face, two oxygen superstructures are observed, a “four spots” followed by a (2√2 × √2)R45° at higher coverages; on all the stepped faces, surface diffusion is activated and oxygen induced faceting occurs. The appearance of faceting is associated with the onset of the formation of the (2√2 × √2)R45° structure on the (100) face. The oxygen induced faceting and the oxygen surface meshes are reversible with coverages. At saturation coverage, a non-reversible surface transition between the c(2 × 2) and (2√2 × √2)R45° superstructures is observed at 420 ± 20 K. The importance of impurity traces on the surface meshes is emphasized. Oxygen coverage at saturation is independent of the studied faces and adsorption temperature. Faceting occurs at a critical coverage value, whatever the stepped faces and adsorption temperature are. Models of the oxygen structure on the (h10) stepped faces are discussed.  相似文献   

4.
Chen Xu  Bruce E. Koel   《Surface science》1994,310(1-3):198-208
The adsorption of NO on Pt(111), and the (2 × 2)Sn/Pt(111) and (√3 × √3)R30°Sn/Pt(111) surface alloys has been studied using LEED, TPD and HREELS. NO adsorption produces a (2 × 2) LEED pattern on Pt(111) and a (2√3 × 2√3)R30° LEED pattern on the (2 × 2)Sn/Pt(111) surface. The initial sticking coefficient of NO on the (2 × 2)Sn/Pt(111) surface alloy at 100 K is the same as that on Pt(111), S0 = 0.9, while the initial sticking coefficient of NO on the (√3 × √3)R30°Sn/Pt(111) surface decreases to 0.6. The presence of Sn in the surface layer of Pt(111) strongly reduces the binding energy of NO in contrast to the minor effect it has on CO. The binding energy of β-state NO is reduced by 8–10 kcal/mol on the Sn/Pt(111) surface alloys compared to Pt(111). HREELS data for saturation NO coverage on both surface alloys show two vibrational frequencies at 285 and 478 cm−1 in the low frequency range and only one N-O stretching frequency at 1698 cm−1. We assign this NO species as atop, bent-bonded NO. At small NO coverage, a species with a loss at 1455 cm−1 was also observed on the (2 × 2)Sn/ Pt(111) surface alloy, similar to that observed on the Pt(111) surface. However, the atop, bent-bonded NO is the only species observed on the (√3 × √3)R30°Sn/Pt(111) surface alloy at any NO coverage studied.  相似文献   

5.
The Si(111)−(√3 × √3)R30°−Ag surface has been investigated using the technique of Li+ impact collision ion scattering spectroscopy. Typical LEED √3 domain sizes were estimated to be on the order of 150 Å for a 1 ML coverage of Ag, with the √3 structure persisting for coverages of Ag up to 35 ML. Silver islanding was found to influence the appearance of the 5 keV Li+ ICISS angular scans even for 1 ML coverages of Ag deposited at 480°C. A detailed structural analysis of the Si(111)−√3−Ag surface (0.25 ML deposition) involved the comparison of 5 keV Li+ ICISS experimental data along the [11 ], [ 10] and [2 1] azimuths with computer simulations of the scattered ion intensities based on previously proposed models for the √3 surface. Nine structurally different models were tested, and only the missing-top-layer (MTL) and the honeycomb-chained-trimer (HCT) models were found to be consistent with all the experimental results. An estimate of 0.4 Å for the maximum downward vertical displacement of the Ag atoms with resect to the surface Si atoms in the MTL model is made. The effects of increased thermal vibrational amplitude in the simulation of Si---Ag shadowing effects is also discussed. The interpretations of previous noble gas ICISS results are shown to be inconsistent with the present alkali metal ICISS study of the √3 surface.  相似文献   

6.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

7.
The structure of the Si(111)√3 × √3-Au surface has been investigated by the use of the surface X-ray diffraction with synchrotron radiation. The structure perpendicular to the surface was determined with respect to the Si bulk crystal. The results of least-squares analysis indicate that Au atoms are adsorbed on the Si substrate in which the first Si layer is missing. The heights of the Au layer and the Si second layer with respect to the intact Si third layer were estimated to be 3.09 ± 0.03 rA and 2.16 ± 0.10 rA, respectively. A possible model of the surface structure is proposed.  相似文献   

8.
The adsorption of CO on Pt(111) between 85K and 300K has been studied by infrared-reflection-absorption spectroscopy together with TPD and LEED. The intensity of the absorption band due to the CO stretch of the linear species shows a maximum at the formation of the (√3 × √3)R30° LEED pattern followed by a minimum at the c(4×2) structure during the adsorption of CO at low temperatures (150K). The absorption band due to the C-O stretch of the bridging species appears only after the formation of the (√3 × √3)R30° pattern and reaches maximum intensity at the c(4×2) structure. Adsorption of CO to higher coverages (corresponding to the compression structures) broadens and shifts this absorption band. At higher temperatures (150K) a third peak is observed at 40cm−1 below the peak due to the bridging species and is attributed to adsorption in the three-fold sites. At 300K both peaks in this region are very broad. The intensity data differs from that measured with EELS (ref.1) and favors a “faultline” structure of the type proposed by Avery (ref.2). Together with the additional information from bandwidths it is possible to distinguish between the various structural models. The results obtained here may also be important in explaining data from other systems such as CO/Cu.  相似文献   

9.
The dissociative chemisorption of molecular bromine on Cu(111) at 300 K has been studied using ultraviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and work function change measurements. A (√3 × √3)R30° structure is formed initially at a bromine coverage of 0.33 ML. This then converts to a (9√3 × 9√3)R30° compression structure with a coverage of 0.41 ML. The coincidence distance of the compression structure is determined entirely by the van der Waals diameter of adsorbed bromine. The applicability of using the van der Waals diameters of the three halogens, Cl, Br and I, to predict the saturation compression structures on Cu(111), is discussed.  相似文献   

10.
By adsorption and subsequent reduction of oxygen on Pd(110), metastable (1 × 2) and (1 × 3) reconstructed surfaces have been produced. Oxygen was not present after the reduction but a small amount of residual hydrogen (< 0.15 monolayers) remained. However this is not the origin of the reconstruction as adsorption of this amount of hydrogen on the clean surface did not cause reconstruction. The structures were stable up to ˜ 370 K, and at higher temperatures they reverted to (1 × 1). These results are compared with Rh(110) where similar reconstructions have been found.  相似文献   

11.
B. Naydenov  L. Surnev   《Surface science》1997,370(2-3):155-165
The adsorption of Na on a Ge(100)-(2 × 1) surface has been studied by means of AES, LEED, EELS, TPD and work-function measurements. In the submonolayer coverage region the coverage dependencies of the desorption activation energy E(Θ) and desorption frequency v(Θ) have been determined using the threshold TPD method. Our experimental data show that after the completion of the first Na layer, 3D crystallites develop on the Na/Ge(100) surface (Stranski-Krastanov growth mode). For Θ > 1 ML, formation, followed by decomposition of a certain Na---Ge surface compound occurs in the temperature range 410–550 K.  相似文献   

12.
The local surface structures of in the ( √3 × √3) R30° and (5√3 × 2) phases have been investigated by means of polarization-dependent sulfur K-edge surface EXAFS. In the (√3 × √3 ) R30° phase, sulfur adatoms are found to occupy threefold hollow sites with a S---Ni distance of 2.13 Å and an inclination angle ω of the Sz.sbnd;Ni bonds at 44° from the surface plane. In contrast, in the (5√3 × 2) phase, it is determined that the Sz.sbnd;Ni bond is longer, 2.18 Å, more inclined, ω = 31°, and that the coordination number is not 3 but 4. These results strongly support a picture involving reconstruction of the top nickel layer to form a rectangular structure. Consideration of several models proposed for the (5√3 × 2) phase leads to one which is compatible with both the present results and results recently reported using STM.  相似文献   

13.
The Sb adsorption process on the Si(1 1 1)–In(4×1) surface phase was studied in the temperature range 200–400 °C. The formation of a Si(1 1 1)–InSb (2×2) structure was observed between 0.5 and 0.7 ML of Sb. This reconstruction decomposes when the Sb coverage approaches 1 ML and Sb atoms rearrange to and (2×1) reconstructions; released In atoms agglomerate into islands of irregular shapes. During the phase transition process from InSb(2×2) to Sb (θSb>0.7 ML), we observed the formation of a metastable (4×2) structure. Possible atomic arrangements of the InSb(2×2) and metastable (4×2) phases were discussed.  相似文献   

14.
The temperature dependent adsorption of sulfur on TiO2(1 1 0) has been studied with X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED). Sulfur adsorbs dissociatively at room temperature and binds to fivefold coordinated Ti atoms. Upon heating to 120°C, 80% of the sulfur desorbs and the S 2p peak position changes from 164.3±0.1 to 162.5±0.1 eV. This peak shift corresponds to a change of the adsorption site to the position of the bridging oxygen atoms of TiO2(1 1 0). Further heating causes little change in S coverage and XPS binding energies, up to a temperature of 430°C where most of the S desorbs and the S 2p peak shifts back to higher binding energy. Sulfur adsorption at 150°C, 200°C, and 300°C leads to a rich variety of structures and adsorption sites as observed with LEED and STM. At low coverages, sulfur occupies the position of the bridging oxygen atoms. At 200°C these S atoms arrange in a (3×1) superstructure. For adsorption between 300°C and 400°C a (3×3) and (4×1) LEED pattern is observed for intermediate and saturation coverage, respectively. Adsorption at elevated temperature reduces the substrate as indicated by a strong Ti3+ shoulder in the XPS Ti 2p3/2 peak, with up to 15.6% of the total peak area for the (4×1) structure. STM of different coverages adsorbed at 400°C indicates structural features consisting of two single S atoms placed next to each other along the [0 0 1] direction at the position of the in-plane oxygen atoms. The (3×3) and the (4×1) structure are formed by different arrangements of these S pairs.  相似文献   

15.
Interfaces prepared by vapor deposition of Sn onto Pt(100) surfaces have been examined using the following techniques: Auger electron and X-ray photoelectron spectroscopy (AES and XPS), low-energy electron diffraction (LEED), and low-energy ion surface scattering (LEISS) with Ne+ ions. Tin deposition was conducted at 320 and 600 K, and the surface composition and order was examined as a function of further annealing to 1200 K. The AES uptake plots (signal versus deposition time) indicate that the Sn growth mode can be described by a layer-by-layer process only up to one adayer at 320 K. Some evidence of 3D growth is inferred from LEED and LEISS data for higher Sn coverages. For deposition at 600 K, AES data indicate significant interdiffusion and surface alloy formation. LEED observations (recorded at a substrate temperature of 320 K) show that the characteristic hexagonal Pt(100) reconstruction disappears with Sn exposures of 4.6 × 1014 atoms cm2Sn = 0.35 monolayer (ML)). Further Sn deposition results in a c(2 × 2) LEED pattern starting at a coverage of slightly above 0.5 ML. The c(2 × 2) LEED pattern becomes progressively more diffuse with increasing Sn exposure with eventual loss of all LEED features above 2.2 ML. Annealing experiments with various precoverages of Sn on Pt(100) are also described by AES, LEED, and LEISS results. For specific Sn precoverages and annealing conditions, c(2 × 2), p(3√2 × √2)R45°, and a combination of the two LEED patterns are observed. These ordered LEED patterns are suggested to arise from ordered PtSn surface alloys. In addition, the chemisorption of CO and O2 at the ordered annealed Sn/Pt(100) surfaces was also examined using thermal desorption mass spectroscopy (TDMS), AES, and LEED.  相似文献   

16.
We determined surface structures in a structural sequence c(2 × 2)→(4 × 4)→(5 × 5) formed on Ni(001) at 370 K with increasing Li coverage by a dynamical low-energy electron diffraction analysis. The (4 × 4) and (5 × 5) are complex surface-structures involving restructuring of substrate surface atoms, and are analogous to the previously determined (3 × 3) and (4 × 4) structures formed for Li/Cu(001). The c(2 × 2) at low coverages is a Li adlayer, so a change of the adsorption mode from adlayer- to restructuring-type is evidenced in the course of increasing coverage within a monolayer range.  相似文献   

17.
D2 temperature-programmed desorption (TPD) was used to probe the structure of the Si(011)-(16 × 2) surface. Deuterium was adsorbed at 200°C to coverages θD ranging up to complete saturation (approximately 1.1 ML) and the sample heated at 5°C s−1. TPD spectra exhibited three second-order desorption peaks labelled β2, β*1 and β1 centered at 430, 520 and 550°C. Of the proposed models for the Si(011)-(16 × 2) reconstruction, the present TPD results as a function of θD provide support for the adatom/dimer model with the β2 peak assigned to D2 desorption from the dihydride phase, while the β*1 and β1 peaks arise from adatom and surface-atom monohydride phases.  相似文献   

18.
The interaction of monolayer coverages of pentacene with the √3 × √3 silver terminated Si(1 1 1) surface has been studies by high resolution core level and valence band photoemission spectroscopies. Core level Si 2p spectra reveal that there is only a very weak interaction between the pentacene and the underlying silicon, however, there is evidence of Fermi level movement. Valence band spectra acquired with both s and p polarised light indicate that for the surface coverages investigated, the molecular layers are oriented parallel to the plane of the surface. These results are in agreement with recent scanning tunneling microscopy (STM) studies which indicated that the pentacene molecules form highly ordered layers with the plane of the molecule parallel to the surface. Changes in the workfunction and Fermi level movements have been used to determine the energy level alignment at the interface. A 0.35 eV interface dipole forms between the pentacene and the silver terminated Si(1 1 1) surface within a two monolayer deposition. Photoemission measurements of the energy level alignment at the interface reveal that there is almost no barrier to charge injection from the conduction band of the semiconductor to the lowest unoccupied molecular orbital (LUMO) of the pentacene molecule.  相似文献   

19.
Adsorption and decomposition of triethylindium (TEI: (C2H5)3In) on a GaP(0 0 1)-(2×1) surface have been studied by low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). It is found from the TPD result that ethyl radical and ethylene are evolved at about 300–400 and 450–550 K, respectively, as decomposition products of TEI on the surface. This result is quite different from that on the GaP(0 0 1)-(2×4) surface. The activation energy of desorption of ethyl radical is estimated to be about 93 kJ/mol. It is suggested that TEI is adsorbed molecularly on the surface at 100 K and that some of TEI molecules are dissociated into C2H5 to form P–C2H5 bonds at 300 K. The vibration modes related to ethyl group are decreased in intensity at about 300–400 and 450–550 K, which is consistent with the TPD result. The TEI molecules (including mono- and di-ethylindium) are not evolved from the surface. Based on the TPD and HREELS results, the decomposition mechanism of TEI on the GaP(0 0 1)-(2×1) surface is discussed and compared with that on the (2×4) surface.  相似文献   

20.
We have performed a detailed study of the formation and the atomic structure of a √3 × √3 surface on Si/Ge(1 1 1) using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Both experimental methods confirm the presence of a √3 × √3 periodicity but unlike the Sn/Ge(1 1 1) and the Sn/Si(1 1 1) surfaces, the Si/Ge(1 1 1) surface is not well ordered. There is no long range order on the surface and the √3 × √3 reconstruction is made up of double rows of silicon atoms separated by disordered areas composed of germanium atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号