首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
Abstract

The scattering and diffraction of a TE (transverse electric) plane wave by a randomly rough half-plane are studied by a combination of three techniques: the Wiener-Hopf technique, the small perturbation method and a probabilistic method based on the shift-invariance of a homogeneous random function. By use of the Da-Fourier transformation based on the shift-invariance, it is shown that the scattered wave is written by an inverse Fourier transformation of a homogeneous random function with a complex parameter. For a small rough case, such a random function with a complex parameter is expanded in a perturbation series and then the first-order solution is obtained exactly in an integral form. The first-order solution involves two physical processes such that the edge-diffracted wave is scattered by the randomly rough plane and the scattered wave, due to roughness, is diffracted by the half-plane. The solution is transformed into a sum of the Fresnel integrals with complex arguments, an integral along the steepest descent path and a branch-cut integral, which are evaluated numerically. Then, intensities of the coherently scattered wave and incoherent wave are calculated in the region near the edge and illustrated in figures.  相似文献   

2.
This paper deals with plane wave scattering and diffraction from a randomly rough strip using a combination of three tools: the perturbation method, the Wiener-Hopf technique and a group-theoretic consideration based on the shift-invariant property of the homogeneous random surface. The Da-Fourier transformation associated with the shift invariance is defined instead of the conventional complex Fourier transformation. For a slightly rough case, Wiener-Hopf equations for the zero-, first- and second-order perturbed fields are derived. They are reduced to a common Wiener-Hopf equation, an exact solution of which is obtained formally by means of the Wiener-Hopf technique. Using the inverse Da-Fourier transformation, the scattered wavefield is obtained as a stochastic field. When the strip width is large compared with the wavelength, a uniformly asymptotic representation of the scattered far field is obtained by the saddle point method. For a Gaussian roughness spectrum, several numerical results are calculated and illustrated in figures, based on which the characteristics of scattering and diffraction are discussed.  相似文献   

3.
The scattering and diffraction of a TE (transverse electric) plane wave by a randomly rough half-plane are studied by a combination of three techniques: the Wiener-Hopf technique, the small perturbation method and a probabilistic method based on the shift-invariance of a homogeneous random function. By use of the Da-Fourier transformation based on the shift-invariance, it is shown that the scattered wave is written by an inverse Fourier transformation of a homogeneous random function with a complex parameter. For a small rough case, such a random function with a complex parameter is expanded in a perturbation series and then the first-order solution is obtained exactly in an integral form. The first-order solution involves two physical processes such that the edge-diffracted wave is scattered by the randomly rough plane and the scattered wave, due to roughness, is diffracted by the half-plane. The solution is transformed into a sum of the Fresnel integrals with complex arguments, an integral along the steepest descent path and a branch-cut integral, which are evaluated numerically. Then, intensities of the coherently scattered wave and incoherent wave are calculated in the region near the edge and illustrated in figures.  相似文献   

4.
A new small‐angle scattering technique in reflection geometry is described which enables a topological study of rough surfaces. This is achieved by using long‐wavelength soft X‐rays which are scattered at wide angles but in the low‐Q range normally associated with small‐angle scattering. The use of nanometre‐wavelength radiation restricts the penetration to a thin surface layer which follows the topology of the surface, while moving the scattered beam to wider angles preventing shadowing by the surface features. The technique is, however, only applicable to rough surfaces for which there is no specular reflection, so that only the scattered beam was detected by the detector. As an example, a study of the surfaces of rough layers of silicon produced by the deposition of nanoparticles by blade‐coating is presented. The surfaces of the blade‐coated layers have rough features of the order of several micrometers. Using 2 nm and 13 nm X‐rays scattered at angular ranges of 5°≤θ≤ 51° and 5°≤θ≤ 45°, respectively, a combined range of scattering vector of 0.00842 Å?1Q≤ 0.4883 Å?1 was obtained. Comparison with previous transmission SAXS and USAXS studies of the same materials indicates that the new method does probe the surface topology rather than the internal microstructure.  相似文献   

5.
The problem of the scattering of a Rayleigh wave by a surface inhomogeneity of the mass density of an isotropic solid is solved in the Born approximation of perturbation theory. The inhomogeneity is statistical with a Gaussian correlation function in the plane parallel to the surface and is deterministic with an exponentially decaying dependence on the coordinate perpendicular to the surface. Expressions are derived for the displacement fields in the scattered longitudinal (P), transverse (SV and SH), and Rayleigh (R) waves at large distances from the inhomogeneity. The Rayleigh wave energy scattering coefficients are calculated as functions of the wavelength λ, the correlation length a of the inhomogeneity, the depth d of the defective layer, and the Poisson ratio of the medium, σ. The angular distribution of the scattered Rayleigh wave energy is determined. Asymptotic expressions are obtained for the scattering coefficient in various limiting cases with respect to the parameters a/λ and λ/d. The relation between the energies in the scattered P, SV, SH, and R waves is established. The resulting equations are used to calculate the scattering coefficients numerically over a wide range of variation of the parameters a/λ, λ/d, and σ; the results are presented in the form of graphs and a table. A physical pattern of the scattering process is constructed and used as a basis for interpreting the results of the study. Fiz. Tverd. Tela (St. Petersburg) 39, 267–274 (February 1997)  相似文献   

6.
Abstract

It is shown that for scattering from a plane in an average rough surface, the scattering cross section of the range of small grazing angles of the scattered wave demonstrates a universal behaviour. If the angle of incidence is fixed (in general it should not be small), the diffusive component of the scattering cross section for the Dirichlet problem is proportional to θ2 where θ is the (small) angle of elevation, and for the Neumann problem it does not depend on θ. For the backscattering case these dependences correspondingly become θ4 and θ°. The result is obtained from the structure of the equations that determine the scattering problem rather than by use of an approximation.  相似文献   

7.
The scattering of a plane acoustic wave from a penetrable prolate or oblate spheroid is considered. Two different methods are used for the evaluation. In the first, the pressure field is expressed in terms of spheroidal wave functions. In the second, a shape perturbation method, the field is expressed in terms of spherical wave functions only, while the equation of the spheroidal boundary is given in spherical coordinates. Analytical expressions are obtained for the scattered pressure field and the various scattering cross-sections when the solution is specialized to small values of the eccentricity h = d/(2a), (h ≪ 1), with d being the interfocal distance of the spheroid and 2a the length of its rotation axis. In this case, exact, closed-form expressions are obtained for the expansion coefficients g (2) and g (4) in the relation S(h) = S(0)[1 + g (2) h 2 + g (4) h 4 + O(h 6)] expressing the scattered field and the scattering cross-sections. Numerical results are given for various values of the parameters. Published in Russian in Akusticheskiĭ Zhurnal, 2008, Vol. 54, No. 2, pp. 189–204. The text was submitted by the authors in English.  相似文献   

8.
Abstract

The scattering of an acoustic signal incident from below at low angles on a rough sea surface is treated by the integral equation method in the parabolic approximation. Equations are obtained allowing the mean scattered field to be calculated even when the surface causes a large phase modulation in the incident wave. Solutions are found using the method of Laplace transforms and some results are presented for a specific type of rough surface.  相似文献   

9.
Abstract

Calculations, using the method of ordered multiple interaction (MOMI), of the scattering of electromagnetic waves from a two-dimensional, randomly rough, perfectly conducting surface with a ratio of RMS height [sgrave] to correlation length a of 1.0 or smaller are presented which demonstrate the robustness of the method. Convergence is achieved in six iterations or less. Some surfaces with [sgrave] = a = 1.0λ and certain topological features exhibited slow convergence. The MOMI inherently will show slow convergence when there are multiple back and forth scatterings. Since resonant scattering is characterized by this type of scattering, this suggests the presence of surface resonances on these surfaces.  相似文献   

10.
X-ray scattering techniques have been used to study the diffuse scattering from a single crystal of Rb1–x(ND4)xD2PO4 withx=0.65. This system has a structural glass phase at low temperatures resulting from the competing ferroelectric interactions of RbD2PO4 and antiferroelectric interactions of (ND4)D2PO4. The diffuse scattering shows a broad peak with a maximum occurring at a wavevector of about 0.3a *, and the intensity of these peaks is surprisingly different for wavevectorsq on opposite sides of the Bragg reflections. A model of the D bonding is developed which suggests that the diffuse scattering arises from the interaction between ferroelectric displacements alongc, ferroelectric displacements alongb, and transverse acoustic modes polarized alongb andc. The model accounts for the incommensurate wavevector and, qualitatively, for the intensity of the diffuse scattering around different Bragg reflections. The temperature dependence of the scattering is also measured.  相似文献   

11.
The diffraction of anE-polarized and anH-polarized wave by an imperfectly conducting slit (on which impedance boundary conditions are imposed) in an infinite metallic plane is investigated. The two independent problems are solved by using integral transforms, the Wiener-Hopf technique and asymptotic approximations. It is found that the diffracted field consists of the sum of fields produced by the two edges of the planes formed by the slit and a field due to the interaction of the two edges.  相似文献   

12.
Abstract

On the basis of the method of reduced Rayleigh equations we present a simple and reciprocal theory of the coherent and incoherent scattering of x-rays from one- and two-dimensional randomly rough surfaces, that appears to be free from the limitations of earlier theories of such scattering based on the Born and distorted-wave Born approximations. In our approach, the reduced Rayleigh equation for the scattering amplitude(s) is solved perturbatively, with the small parameter of the theory η(ω) = 1 - ε(ω), where ε(ω) is the dielectric function of the scattering medium. The magnitude of η(ω) for x-rays is in the range from 10?6 to 10?3, depending on the wavelength of the x-rays. The contributions to the mean differential reflection coefficient from the coherent and incoherent components of the scattered x-rays are calculated through terms of second order in η(ω). The resulting expressions are valid to all orders in the surface profile function. The results for the incoherent scattering display a Yoneda peak when the scattering angle equals the critical angle for total internal reflection from the vacuum-scattering medium interface for a fixed angle of incidence, and when the angle of incidence equals the critical angle for total internal reflection for a fixed scattering angle. The approach used here may also be useful in theoretical studies of the scattering of electromagnetic waves from randomly rough dielectric-dielectric interfaces, when the difference between the dielectric constants on the two sides of the interface is small.  相似文献   

13.
In this paper we have studied the problem of diffraction of a plane wave by a finite soft-hard strip. By using the Fourier transform the boundary value problem is reduced to a matrix Wiener-Hopf equation. Using the matrix factorization of the kernel matrix, the problem is solved for two coupled equations using the Wiener-Hopf technique and the method of steepest descent. It is observed that the diffracted field is the sum of the fields produced by the two edges of the strip and an interaction field. Some graphs showing the effects of various parameters on the field produced by two edges of the strip are also plotted.  相似文献   

14.
Abstract

The crystal structure of Rb2CdCl4 has been studied by X-ray diffraction at 295 and 160 K in the initial phase D 17 4h as well as at 105 K in the ferroelastic phase. It was found that the phase transition D 17 4h ? D 10 2h takes place instead of D 17 4h ? D 18 2h as proposed earlier. The first of the transitions corresponds to unequal and the second to equal Φ-tilts of CdCl6-octahedra around the a and b axes of the tetragonal unit cell.  相似文献   

15.
胡长城  叶慧琪  王刚  刘宝利 《物理学报》2011,60(1):17803-017803
利用瞬态光栅激光光谱技术测量了(110)方向生长的本征GaAs/AlGaAs多量子阱的双极扩散系数.室温下,光激发的载流子浓度nex=3.4×1010/cm2时,测得双极扩散系数Da=13.0 cm2/s,载流子的寿命τR=1.9 ns.改变光激发的载流子浓度(nex关键词: 瞬态光栅 量子阱 空穴输运  相似文献   

16.
The scattering of a plane acoustic wave from an impenetrable, soft or hard, prolate or oblate spheroid is considered. Two different methods are used for the evaluation. In the first, the pressure field is expressed in terms of spheroidal wave functions. In the second, a shape perturbation method, the field is expressed in terms of spherical wave functions only, while the equation of the spheroidal boundary is given in spherical coordinates. Analytical expressions are obtained for the scattered pressure field and the various scattering cross-sections, when the solution is specialized to small values of the eccentricity h = d/(2a) , where d is the interfocal distance of the spheroid and 2a is the length of its rotation axis. In this case, exact, closed-form expressions are obtained for the expansion coefficients g (2) and g (4) in the relation S(h) = S(0)[1 + g (2) h 2 + g (4) h 4 + O(h 6)] expressing the scattered field and the scattering cross-sections. Numerical results are given for various values of the parameters. Published in Russian in Akusticheskiĭ Zhurnal, 2007, Vol. 53, No. 4, pp. 500–513. The text was submitted by the authors in English.  相似文献   

17.
A new type of light-scattering experiment, which should measure directly the triple static structure factor S (3) (k, q) of a fluid, is proposed. S (3)(k, q) is the full spatial Fourier transform of the equilibrium triplet distribution function g (3)(r 1, r 2, r 3). The experiment may also be used to study dynamic correlation functions of the form <ak (t)aq (t′)a_k_q(t″)> (where ak () is the kth spatial Fourier component of the density), thereby giving new information on mode-mode coupling. The method obtains its information from triple correlations in the arrival of scattered photons at three detectors. The detectors must be operated in the heterodyne mode (i.e. with a local oscillator); the scattering volume must be much larger than the volume over which molecular positions are correlated. Comparison is made with previous analyses of other multi-detector experiments.  相似文献   

18.
Abstract

The scattered field of Gaussian beam scattering from arbitrarily shaped dielectric objects with rough surfaces is investigated for optical and infrared frequencies by using the plane wave spectrum method and the Kirchhoff approximation, and the formulae for the coherent and incoherent scattering cross sections are obtained theoretically based on geometrical optics and tangent plane approximations. The infrared laser scattering cross sections of a rough sphere are calculated at 1.06 μm, and the influence of the beam size is analysed numerically. It is shown that when the beam size is much larger than the size of the object, the results in this paper will be close to those of an incident plane wave.  相似文献   

19.
Abstract

We consider a statistically rough impedance surface that is concave on average in contrast to a plane. Backscattering from such a surface is considered based on the small perturbation theory method. The diffraction problem is divided into two parts which are considered separately: the problem of scattering by small roughness (assumed to be local) and the propagation of incident and scattered fields over a smooth large-scale concave surface. In contrast to the ‘two-scale’ scattering model, the zero-order unperturbed wavefield is not assumed to be specularly reflected from the local tangent plane to the smooth surface, but it is a solution of a corresponding diffraction problem. Two particular cases of smooth surfaces are considered: first, the inner surface of a concave cylinder with a constant radius and finite angular pattern, and second, a compound surface that consists of a coupled half-plane and the cylindrical surface mentioned above. In a geometrical optics limit and with propagation at low grazing angles, the analytical results for a zero-order (unperturbed) field are obtained for these two cases in the form of a series over multiple specular reflected fields. It is shown that these non-local processes lead to the essential increase in the backscattering cross section in comparison with the two-scale model and tangent-plane approach.  相似文献   

20.
The physical optics integral of the scattered waves by an impedance strip is derived by using the modified theory of physical optics. The surface currents of the physical optics integral, which was introduced for the scattered waves by an impedance half-plane, are taken into account. The uniform diffracted fields of the impedance strip are evaluated asymptotically. The second order diffraction terms are also obtained. The total scattered field and its subcomponents are plotted and the effect of the second order diffraction and strip width to the scattering is investigated numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号