首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This second part presents illustrative examples of the model developed in the companion paper, which is based on the first- and second-order optics approximation. The surface is assumed to be Gaussian and the correlation height is chosen as anisotropic Gaussian. The incoherent scattering coefficient is computed for a height rms range from 0.5λ 1λwhere λ is the electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for an incidence angle range from 0 to 70°. In addition, simulations are presented for an anisotropic Gaussian surface and when the receiver is not located in the plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces, the cross- and co-polarizations are also compared with a numerical approach obtained from the forward.backward method with a novel spectral acceleration algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18). (Some figures in this article are in colour only in the electronic version)  相似文献   

2.
Abstract

In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an ‘exact’ numerical method.  相似文献   

3.
The modification of a gallium arsenide surface during irradiation by heavy cesium ions Cs+ is investigated by measuring the surface height distribution with an atomic force microscope. Both increases and decreases in the rms height σ, an integral parameter of the surface, are observed to occur. It is established that for all experimental samples the roughness of the gallium arsenide surface increases in a 1–100 nm lateral range. Analysis of the structure function yields an estimate of the characteristic lateral dimensions of the surface structures arising during ion etching. Zh. Tekh. Fiz. 69, 107–111 (February 1999)  相似文献   

4.
Abstract

This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

5.
A theory is formulated for the elastic scattering of light through quasi-two-dimensional exciton states in a quantum well with randomly uneven walls. The nonlocal exciton susceptibility is expressed in terms of random functions describing the shape of the quantum well boundaries up to and including linear terms in the unevenness height. The resonance elastic scattering cross sections in the presence of arbitrary statistical unevenness are calculated in the Born approximation for all channels in which the initial and final states are represented by an electromagnetic TM or TE mode. The spectral and angular dependences of the scattering probability are calculated with the unevenness characterized by Gaussian correlation functions. It follows from numerical estimates that elastic scattering in quantum wells should be observed for unevenness having an rms height of the order of the thickness of an atomic monolayer. Fiz. Tverd. Tela (St. Petersburg) 41, 330–336 (February 1999)  相似文献   

6.
Abstract

A study of the regions of validity for rough surface scattering models is conducted for surfaces with Gaussian and power law power spectra. Models included in the study are physical optics (PO), geometrical optics, small perturbation method and small slope approximation. The range of validity of the PO model is commonly described by a bound on the radius curvature of the surface relative to the electromagnetic wavelength. We show empirically that for backscattering the region of accuracy is more accurately described by a bound on surface slope. For surfaces with a Gaussian power spectrum, the PO model is accurate to within 2 dB for RMS surface slope values less than 0.59 cos3θ. For surfaces with a power law power spectral density, the PO model is accurate for significant slope values (RMS surface height/wavelength of the dominant spectral peak) less than 0.037 cos3θ. These conditions are valid up to approximately 30°. The regions of validity of other models in the study are also shown to be well approximated by bounds on surface slope.  相似文献   

7.
In this paper, the monostatic (transmitter and receiver are located at the same place) and bistatic (transmitter and receiver are distinct) statistical shadowing functions from an anisotropic two-dimensional randomly rough surface are presented. This parameter is especially important in the case of grazing angles for computing the bistatic scattering coefficient in optical and microwave frequencies. The objective of this paper is to extend the previous work (Bourlier C, Berginc G and Saillard J 2002 Waves Random Media 12 145-74), valid for a one-dimensional surface, to a two-dimensional anistropic surface by considering a joint Gaussian process of surface slopes and heights separating two points of the surface. The monostatic average (statistical shadowing function average over the statistical variables) shadowing function is then performed in polar coordinates with respect to the incidence angle, the azimuthal direction and the surface height two-dimensional autocorrelation function. In addition, for a bistatic configuration, it depends on the incidence angle and azimuthal direction of the receiver. For Gaussian and Lorentzian correlation profiles and practically important power-type spectra such as the Pierson-Moskowitz sea roughness spectrum, the numerical solution, obtained from generating the surface Gaussian elevations (Monte Carlo method), is compared with the uncorrelated and correlated models. The results show that the correlation underestimates the shadow slightly, whereas the uncorrelated results weakly overpredict the shadow and are close to the numerical solution.  相似文献   

8.
Abstract

The effect of beam incidence on dry etching damage in n- and p-type silicon has been studied with Schottky barriers fabricated on samples etched with 0.5 keV and 1.0 keV Ar. The electrical properties of Schottky barriers are extremely sensitive to surface damage, and it is found that there is a steep dependence of the effective Schottky barrier height on the angle of incidence. Evaluation of the current-voltage and capacitance-voltage characteristics of the diodes shows that the barrier modification peaks at an angle of incidence of about 45°.  相似文献   

9.
Abstract

In this paper, the bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase method and scalar approximation with shadowing effect is investigated. Both of these approaches use the Kirchhoff integral. With the stationary phase, the bistatic cross section is formulated in terms of the surface height joint characteristic function where the shadowing effect is investigated. In the case of the scalar approximation, the scattering function is computed from the previous characteristic function and in terms of expected values for the integrations over the slopes, where the shadowing effect is analysed analytically. Both of these formulations are compared with experimental data obtained from a Gaussian one-dimensional randomly rough perfectly-conducting surface. With the stationary-phase method, the results are applied to a two-dimensional sea surface.  相似文献   

10.
Abstract

In this paper, the backscattering coefficient of a two-dimensional randomly rough perfectly-conducting surface is investigated using the Kirchhoff approach with a shadowing function. The rough surface height/slope correlations assumed to be Gaussian are accounted for in this analysis. The scattering coefficient is then formulated in terms of a characteristic function for the integrations over the surface heights, in terms of expected values for the integrations over the surface slopes. Numerical comparisons of Kirchhoff's approach (KA) with the stationary-phase (SP) approximation are made with respect to the choice of the one-dimensional surface height autocorrelation function and the shadowing effect. For an isotropic surface the results show that SP underestimated the incoherent backscattering coefficient compared with KA. Moreover, when the correlation between the slopes and the heights is neglected, the shadowing effect may be ignored.  相似文献   

11.
Abstract

Measurements are presented of the angular distribution of four wavelengths of light scattered by a one-dimensional random rough surface, whose probability density function is Gaussian with a standard deviation σ=1.22±0.02 μm and whose lateral correlation function is also Gaussian with 1/e width τ=3.17±0.07 μm. The wavelengths used are 0.63, 1.15, 3.39 and 10.6 μm. The surface is used in two forms: coated with gold and as an almost lossless dielectric. The results are compared to those predicted by a double scattering form of the Kirchhoff formulation. Agreement is good at small angles of incidence but less good at larger angles of incidence.  相似文献   

12.
Root mean square (rms) beam wander of J 0-Bessel Gaussian and I 0-Bessel Gaussian beams, normalized by the rms beam wander of the fundamental Gaussian beam, is evaluated in atmospheric turbulence. Our formulation is based on the first and the second statistical moments obtained from the Rytov series. It is found that after propagating in atmospheric turbulence, the collimated J 0-Bessel Gaussian and the I 0-Bessel Gaussian beams have smaller rms beam wander than that of the Gaussian beam, regardless of the choice of Bessel width parameter. However, the extent of such an advantage depends on the chosen width parameter, Gaussian source size, propagation distance and the wavelength. Focusing at finite distances of the considered beams causes the rms beam wander to decrease sharply at the propagation distances equal to the focusing parameter.  相似文献   

13.
Abstract

The present paper deals with the scattering of an obliquely polarized electromagnetic (EM) wave from a slightly rough surface, which is assumed to be a two-dimensional (2D), homogeneous and isotropic Gaussian random field. In contrast to the cases of TE(s) and TM(p) polarized incidence, the scattering profile for an obliquely polarized incidence is not symmetric with respect to the incident plane, despite the fact that the random surface is statistically isotropic.  相似文献   

14.
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.  相似文献   

15.
Abstract

Three types of statistical fourth moments of acoustic waves forward scattered by a randomly rough ocean surface are derived and numerically evaluated. The first one is related to the scintillation index which characterizes intensity fluctuations. The second one is the two-position intensity correlation function which describes the spatial correlation of wave intensity. The third is the fourth-moment two-position coherence function which carries information on the phase fluctuations of the scattered wave. In the range of weak scattering, the ratio of the absolute value of the fourth-moment two-position coherence function over the two-position intensity correlation exactly describes the mean-square fluctuation of the relative phase between the two positions. The acoustic frequency is high so that the Kirchhoff approximation can be used. Two types of spectral functions for surface-height fluctuations are considered: a Gaussian spectrum and the Donelan-Pierson spectrum. The latter is obtained from a model for the fluctuations of the ocean surface height which are controlled by the wind speed at the ocean surface.  相似文献   

16.
Abstract

The operator expansion method is known to give accurate numerical results for scattering from individual surfaces that are too complicated for other methods. It is less widely appreciated that the method can be applied to random surfaces as well. The simplest application is the modelling of mean forward scatter from a homogeneous Gaussian ensemble of surfaces. To leading order in the admittance operator, the formula for the scalar Dirichlet boundary includes an exponential form in the roughness correlation function. The scalar Neumann boundary adds terms involving the gradients of the exponential form. These factors modestly alter the magnitude and advance the phase of the coherent scatter relative to the conventional one-point (Kirchhoff) approximation when the significant surface correlation scales are comparable to the radiation wavelength. Narrow troughs in the surface undulations ‘repel’ the radiation and effectively elevate and flatten the mean surface. These results are reliable over a wide range of surface amplitudes and correlation scales, provided the slope times Rayleigh height (Dirichlet problem) and slope (Neumann problem) are not large.  相似文献   

17.
In an effort to establish the anisotropic work function of aluminium, smooth (100), (111), and (110) faces of a single crystal were cleaned through a mild cyclic treatment of ion bombardment and annealing. The vectorial photoeffect measured on all faces was in good agreement with poly crystal data, thereby indicating a surface smoothness of better than 15 Å rms height variation. An Auger analyzer provided, in addition to a test of the surface cleanliness, a crude record of the surface diffraction properties. The (100) and (111) faces were well ordered with photoelectric work functions of 4.41 ± 0.03 eV and 4.24 ± 0.02eV respectively, the anisotropy being in excellent accord with theory. Due to either surface defects or inadequacy of the theory, the work function of 4.28 ± 0.02 eV for the less well ordered (110) face deviated significantly from the theoretical prediction.  相似文献   

18.
We present here dependencies of scattered and absorbed powers of incident perpendicularly and parallel polarized microwaves by a multilayered cylinder. We consider here the normal (angle ??=90°) and oblique (angles ??=60°,30°,5°) incidence of microwave on the cylinder. The one consists of a glass core that is coated by the six anisotropic metamaterial and lossy n-Si semiconductor alternative layers. Characteristics of a cylinder with the semiconductor external layer are presented. The dispersion dependency of n-Si losses was taken into account. The metamaterial is a uniaxial anisotropic medium with the electric and magnetic plasma resonances in the frequency range from 1 until 4?GHz. The anisotropic metamaterial can include the constitutive parameters equal to zero. The multilayered cylinder has the external radius equal to 2?mm. The glass core has a radius equal to 0.5?mm. The thickness of all layers is the same. We have compared the scattered and absorbed power dependencies on the microwave polarization, the angle of microwave incidence (the normal and oblique directions of the incidence to the z-axis), and the n-Si specific resistivity. We discovered specific dependencies of scattered and absorbed powers on the parameters.  相似文献   

19.
Abstract

By the use of the reduced Rayleigh equation for the amplitude of a surface plasmon polariton on a one-dimensional randomly rough metal surface that is in contact with vacuum, we calculate the dispersion and damping of the surface electromagnetic wave to the lowest nonzero order in the rms height of the surface. It is found that the frequency of the surface plasmon polariton is depressed by the surface roughness. The attenuation of the surface plasmon polariton in the long wavelength limit is due primarily to its scattering into other surface plasmon polaritons, while in the short wavelength limit it is due primarily to its roughness-induced scattering into volume electromagnetic waves in the vacuum. The energy mean free path of the surface plasmon polariton is shorter on a randomly rough metal surface than it is on a lossy planar metal surface, and the surface plasmon polariton is more tightly bound to a rough surface than to a planar one.  相似文献   

20.
From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号